Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, Vidya Bhaskeren_US
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2024-04-26T12:43:23Z-
dc.date.available2024-04-26T12:43:23Z-
dc.date.issued2024-
dc.identifier.citationShukla, V. B., Bhatia, V., & Choi, K. (2024). Estimation of Cascaded Sparse Channel for IRS-Assisted Millimeter Wave Hybrid MIMO System. IEEE Communications Letters. Scopus. https://doi.org/10.1109/LCOMM.2024.3370257en_US
dc.identifier.issn1089-7798-
dc.identifier.otherEID(2-s2.0-85186975535)-
dc.identifier.urihttps://doi.org/10.1109/LCOMM.2024.3370257-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13589-
dc.description.abstractA promising strategy for next-generation wireless communication systems in pursuit of ultra-high information speed and extended coverage involves the synergistic integration of intelligent reflecting surfaces (IRS) with millimeter-wave multiple-input multiple-output (mmWave MIMO) systems. However, realizing the full potential of IRS-assisted mmWave MIMO systems necessitates precise channel state information (CSI). Existing CSI estimation methods for IRS-assisted mmWave hybrid (analog+digital) MIMO systems, such as orthogonal matching pursuit (OMP) and sparse Bayesian learning (SBL), require substantial number of pilots and exhibit high computational complexity due to their offline nature and requires matrix inversions. Consequently, these characteristics offer significant estimation delays and reduced spectral efficiency. To tackle these challenges, we propose an online variable step size zero attracting least mean square-based channel estimator to overcome the limitations of existing estimators. Moreover, we compare the accuracy of the proposed method with existing OMP, SBL, and oracle least squares method, which is used for benchmarking purpose. Simulation results are presented to validate effectiveness of the suggested estimator in terms of accuracy, complexity, and pilot overhead requirements. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Communications Lettersen_US
dc.subject<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l</italic><sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">0-normen_US
dc.subjectChannel estimationen_US
dc.subjectIRSen_US
dc.subjectMatching pursuit algorithmsen_US
dc.subjectMillimeter wave communicationen_US
dc.subjectMIMO communicationen_US
dc.subjectmmWaveen_US
dc.subjectonline estimatoren_US
dc.subjectRadio frequencyen_US
dc.subjectTransmission line matrix methodsen_US
dc.subjectVectorsen_US
dc.subjectVSSen_US
dc.subjectzero attractoren_US
dc.titleEstimation of Cascaded Sparse Channel for IRS-Assisted Millimeter Wave Hybrid MIMO Systemen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: