Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJagne, Mohiten_US
dc.contributor.authorBrawar, Bhuvneshen_US
dc.contributor.authorDatta, Abhirupen_US
dc.date.accessioned2024-06-28T11:37:50Z-
dc.date.available2024-06-28T11:37:50Z-
dc.date.issued2023-
dc.identifier.citationJagne, M., Brawar, B., & Datta, A. (2023). Ensemble Machine Learning model for Ionospheric TEC Prediction over Low-Latitude Regions. 2023 8th International Conference on Computers and Devices for Communication, CODEC 2023. Scopus. https://doi.org/10.1109/CODEC60112.2023.10465765en_US
dc.identifier.isbn979-8350317176-
dc.identifier.otherEID(2-s2.0-85190070167)-
dc.identifier.urihttps://doi.org/10.1109/CODEC60112.2023.10465765-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13737-
dc.description.abstractPredicting ionospheric TEC enhances GPS and NavIC navigation by countering solar and magnetic field effects. We introduced an ensemble of Random Forest, AdaBoost and XgBoost for TEC prediction in central India's low-latitude region. Equatorial Ionization Anomaly makes low-latitude TEC forecasting challenging. Our novel work is to make an ensemble modelling algorithm for strengthening and improved performance. This approach not only capitalizes on the unique strengths of each algorithm but also produces a combination effect that enhances the overall performance. It is possible to utilize TEC gradients from Radio Interferometers like GMRT to reconstruct smaller-scale changes using these models [1]. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2023 8th International Conference on Computers and Devices for Communication, CODEC 2023en_US
dc.subjectAdaBoosten_US
dc.subjectlow-latitute regionsen_US
dc.subjectMachine Learningen_US
dc.subjectRandom Foresten_US
dc.subjectTECen_US
dc.subjectXgboosten_US
dc.titleEnsemble Machine Learning model for Ionospheric TEC Prediction over Low-Latitude Regionsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Astronomy, Astrophysics and Space Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: