Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2024-07-05T12:49:16Z-
dc.date.available2024-07-05T12:49:16Z-
dc.date.issued2024-
dc.identifier.citationBabita, Jha, A. K., Juyal, A., & Maji, B. (2024). An asymptotic expansion for a Lambert series associated with Siegel cusp forms. Ramanujan Journal. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192082540&doi=10.1007%2fs11139-024-00864-z&partnerID=40&md5=6a7546e299d49cee9e1bc88bde846b9fen_US
dc.identifier.issn1382-4090-
dc.identifier.otherEID(2-s2.0-85192082540)-
dc.identifier.urihttps://doi.org/10.1007/s11139-024-00864-z-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13815-
dc.description.abstractIn 2000, Hafner and Stopple proved a conjecture of Zagier which states that the constant term of the automorphic function |Δ(x+iy)|2, i.e., the Lambert series ∑n=1∞τ(n)2e-4πny, can be expressed in terms of the non-trivial zeros of the Riemann zeta function. In this article, we study an asymptotic expansion of a generalized version of the aforementioned Lambert series associated with Siegel cusp forms. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceRamanujan Journalen_US
dc.subject11M26en_US
dc.subjectLambert seriesen_US
dc.subjectNon-trivial zerosen_US
dc.subjectPrimary 11M06en_US
dc.subjectRankin–Selberg L-functionen_US
dc.subjectRiemann zeta functionen_US
dc.subjectSecondary 11N37en_US
dc.subjectSiegel cusp formsen_US
dc.titleAn asymptotic expansion for a Lambert series associated with Siegel cusp formsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: