Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/13841
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khati, Unmesh | en_US |
dc.date.accessioned | 2024-07-05T12:49:22Z | - |
dc.date.available | 2024-07-05T12:49:22Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Ghosh, S. S., Khati, U., Kumar, S., Bhattacharya, A., & Lavalle, M. (2023). GP4F - A Gaussian Process Regression Model For Forest Biomass Retrieval Utilizing Simulated NISAR Data. 2023 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2023. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85191015359&doi=10.1109%2fInGARSS59135.2023.10490338&partnerID=40&md5=cc8d860b85a27f8e993a4ef2bf79b28f | en_US |
dc.identifier.isbn | 979-8350325591 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.other | EID(2-s2.0-85191015359) | - |
dc.identifier.uri | https://doi.org/10.1109/InGARSS59135.2023.10490338 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/13841 | - |
dc.description.abstract | In this study, we propose a Matern-3/2 kernel-based Gaussian process regression model to estimate the above-ground biomass of an entire forest and its major forest types. We have utilized L-band full polarimetric simulated NISAR data and LiDAR height measurements in our present work. We evaluated the performance of the GPR model to estimate AGB within the range 8 to 100 Mg ha-1 at a spatial resolution of 100 m. Finally, we also demonstrate and discuss the AGB maps generated over the entire study area for two above-ground biomass ranges : (a) 8 to 100 Mg ha-1 (b) 8 to 470 Mg ha-1. © 2023 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.source | 2023 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2023 | en_US |
dc.subject | Above-ground biomass | en_US |
dc.subject | Forests | en_US |
dc.subject | Gaussian processes | en_US |
dc.subject | LiDAR | en_US |
dc.subject | Matérn-3/2 kernel | en_US |
dc.subject | Regression | en_US |
dc.subject | Simulated NISAR | en_US |
dc.title | GP4F - A Gaussian Process Regression Model For Forest Biomass Retrieval Utilizing Simulated NISAR Data | en_US |
dc.type | Conference Paper | en_US |
Appears in Collections: | Department of Astronomy, Astrophysics and Space Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: