Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhati, Unmeshen_US
dc.date.accessioned2024-07-05T12:49:22Z-
dc.date.available2024-07-05T12:49:22Z-
dc.date.issued2023-
dc.identifier.citationGhosh, S. S., Khati, U., Kumar, S., Bhattacharya, A., & Lavalle, M. (2023). GP4F - A Gaussian Process Regression Model For Forest Biomass Retrieval Utilizing Simulated NISAR Data. 2023 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2023. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85191015359&doi=10.1109%2fInGARSS59135.2023.10490338&partnerID=40&md5=cc8d860b85a27f8e993a4ef2bf79b28fen_US
dc.identifier.isbn979-8350325591-
dc.identifier.issn0000-0000-
dc.identifier.otherEID(2-s2.0-85191015359)-
dc.identifier.urihttps://doi.org/10.1109/InGARSS59135.2023.10490338-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13841-
dc.description.abstractIn this study, we propose a Matern-3/2 kernel-based Gaussian process regression model to estimate the above-ground biomass of an entire forest and its major forest types. We have utilized L-band full polarimetric simulated NISAR data and LiDAR height measurements in our present work. We evaluated the performance of the GPR model to estimate AGB within the range 8 to 100 Mg ha-1 at a spatial resolution of 100 m. Finally, we also demonstrate and discuss the AGB maps generated over the entire study area for two above-ground biomass ranges : (a) 8 to 100 Mg ha-1 (b) 8 to 470 Mg ha-1. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2023 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2023en_US
dc.subjectAbove-ground biomassen_US
dc.subjectForestsen_US
dc.subjectGaussian processesen_US
dc.subjectLiDARen_US
dc.subjectMatérn-3/2 kernelen_US
dc.subjectRegressionen_US
dc.subjectSimulated NISARen_US
dc.titleGP4F - A Gaussian Process Regression Model For Forest Biomass Retrieval Utilizing Simulated NISAR Dataen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Astronomy, Astrophysics and Space Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: