Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/14000
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Asish Kumaren_US
dc.contributor.authorBadole, Manishen_US
dc.contributor.authorVasavan, Hari Narayananen_US
dc.contributor.authorSaxena, Samriddhien_US
dc.contributor.authorGami, Pratikshaen_US
dc.contributor.authorDagar, Nehaen_US
dc.contributor.authorKumar, Sunilen_US
dc.date.accessioned2024-07-18T13:48:07Z-
dc.date.available2024-07-18T13:48:07Z-
dc.date.issued2024-
dc.identifier.citationDas, A. K., Badole, M., Vasavan, H. N., Saxena, S., Gami, P., Dagar, N., & Kumar, S. (2024). Integrated cathode-electrolyte (Li6.55La3Zr1.55Ta0.45O12/PEO-LiTFSI) architecture driven excellent performance of solid-state lithium metal batteries. Journal of Energy Storage. Scopus. https://doi.org/10.1016/j.est.2024.112452en_US
dc.identifier.issn2352-152X-
dc.identifier.otherEID(2-s2.0-85195222201)-
dc.identifier.urihttps://doi.org/10.1016/j.est.2024.112452-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/14000-
dc.description.abstractThe solid electrolytes in solid-state lithium batteries suffer due to low room temperature conductivity (&lten_US
dc.description.abstract10−4 S cm−1) and sluggish lithium-ion transport at the electrode-electrolyte interface. To fabricate solid-state lithium metal batteries employing composite solid electrolyte, Ta-doped Li7La3Zr2O12 (LLZTO) with room temperature conductivity ~6.1 × 10−4 S cm−1 was synthesized and dispersed in polyethylene oxide‑lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) polymer-salt matrix in different proportions. The sample SCE20 (20 wt% LLZTO &ampen_US
dc.description.abstract80 wt% PEO-LITFSI), showing the best effective lithium-ion conductivity amongst all compositions (~ 1.44 × 10−4 S cm−1), was used to fabricate lithium symmetric cells and all-solid-state cells with LiFePO4 cathode in conjunction with lithium metal as the anode. The fabricated lithium symmetric cells showed high cyclability (&gten_US
dc.description.abstract1100 h) with a low overpotential of ~180 mV at a current density of ~0.4 mA cm−2. The LiFePO4 cells with monolithic cathode-SCE20 electrolyte architecture in conjunction with lithium metal as the anode exhibited ~50 % lower interfacial resistance and delivered ~84.2 % capacity retention after 1000 cycles at 1C with an initial discharge capacity of ~133 mAh g−1. This facile, cost-efficient design of integrated cathode-electrolyte architecture by a doctor blade coating method can drive the application of solid-state lithium metal batteries on a commercial scale. © 2024 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceJournal of Energy Storageen_US
dc.subjectAll-solid-state cellsen_US
dc.subjectCathode-electrolyte interfaceen_US
dc.subjectComposite electrolytesen_US
dc.subjectDoctor-blade coatingen_US
dc.subjectGarneten_US
dc.titleIntegrated cathode-electrolyte (Li6.55La3Zr1.55Ta0.45O12/PEO-LiTFSI) architecture driven excellent performance of solid-state lithium metal batteriesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: