Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/14611
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSethi, Anikeiten_US
dc.contributor.authorSaini, Krishanuen_US
dc.contributor.authorSingh, Rituraj K.en_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2024-10-08T11:11:37Z-
dc.date.available2024-10-08T11:11:37Z-
dc.date.issued2024-
dc.identifier.citationSethi, A., Saini, K., Singh, R., Tiwari, A., Saurav, S., Singh, S., & Chauhan, V. (2024). MAAD-GAN: Memory-Augmented Attention-Based Discriminator GAN for Video Anomaly Detection. Springer Science and Business Media Deutschland GmbHen_US
dc.identifier.citationScopus. https://doi.org/10.1007/978-3-031-58535-7_14en_US
dc.identifier.isbn978-3031585340-
dc.identifier.issn1865-0929-
dc.identifier.otherEID(2-s2.0-85200693991)-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-58535-7_14-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/14611-
dc.description.abstractThe detection of anomalies in video data is of great importance in various applications, such as surveillance and industrial monitoring. This paper introduces a novel approach, named MAAD-GAN, for video anomaly detection (VAD) utilizing Generative Adversarial Networks (GANs). The MAAD-GAN framework combines a Wide Residual Network (WRN) in the generator with a memory module to learn the normal patterns present in the training video dataset, enabling the generation of realistic samples. To address the challenge of detecting subtle anomalies and those with motion characteristics, we propose the integration of self-attention in the discriminator model. Our proposed model MAAD-GAN enhances the ability to distinguish between real and generated samples, ensuring that anomalous samples are distorted when reconstructed. Experimental evaluations show the effectiveness of MAAD-GAN as compared to traditional methods on UCSD (University of California, San Diego) Peds2, CUHK Avenue, and ShanghaiTech datasets. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceCommunications in Computer and Information Scienceen_US
dc.subjectAnomaly Detectionen_US
dc.subjectDeep Learningen_US
dc.subjectGenerative Adversarial Networksen_US
dc.subjectMemory Networken_US
dc.titleMAAD-GAN: Memory-Augmented Attention-Based Discriminator GAN for Video Anomaly Detectionen_US
dc.typeConference paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: