Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/14727
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMakam, Kiran Kumaren_US
dc.contributor.authorSingh, Vivek Kumaren_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2024-10-25T05:50:59Z-
dc.date.available2024-10-25T05:50:59Z-
dc.date.issued2024-
dc.identifier.citationMakam, K. K., Singh, V. K., & Pachori, R. B. (2024). ALS Detection Framework Based on Automatic Singular Spectrum Analysis and Quantum Convolutional Neural Network from EMG Signals. IEEE Sensors Letters. Scopus. https://doi.org/10.1109/LSENS.2024.3449369en_US
dc.identifier.issn2475-1472-
dc.identifier.otherEID(2-s2.0-85202725799)-
dc.identifier.urihttps://doi.org/10.1109/LSENS.2024.3449369-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/14727-
dc.description.abstractElectromyogram (EMG) signals are recordings of the electrical activity in muscles, which are studied due to their informative nature regarding neuromuscular disorders. Analysis of EMG signals is invaluable for identifying various neuromuscular conditions. In this letter, an automatic singular spectrum analysis (Auto-SSA) and quantum convolutional neural network (QCNN)-based framework is proposed for the detection of amyotrophic lateral sclerosis (ALS) using EMG signals. The Auto-SSA effectively decomposes the EMG signals into reconstructed components, from which the particle swarm optimization extracts the most significant features. The QCNN classifies the extracted features for efficient ALS detection. The proposed framework outperforms the compared state-of-the-art ALS detection frameworks, achieving a testing accuracy of 98.50&#x0025en_US
dc.description.abstract. With the obtained performance, the proposed framework could be a valuable diagnostic tool for ALS neuromuscular conditions. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Lettersen_US
dc.subjectAccuracyen_US
dc.subjectAmyotrophic lateral sclerosis identificationen_US
dc.subjectand quantum machine learningen_US
dc.subjectautomatic singular spectrum analysisen_US
dc.subjectelectromyogramen_US
dc.subjectElectromyographyen_US
dc.subjectFeature extractionen_US
dc.subjectMachine learningen_US
dc.subjectparticle swarm optimizationen_US
dc.subjectquantum convolutional neural networken_US
dc.subjectSensorsen_US
dc.subjectTestingen_US
dc.subjectTrainingen_US
dc.titleALS Detection Framework Based on Automatic Singular Spectrum Analysis and Quantum Convolutional Neural Network from EMG Signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: