Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/14915
Title: Secondary Gravity Wave Propagation in Tropical Thermospheric Region: Role of Varying Kinematic Viscosity
Authors: Datta, Soumen
Das, Saurabh
Issue Date: 2024
Publisher: John Wiley and Sons Inc
Citation: Datta, S., Das, S., & Sunda, S. (2024). Secondary Gravity Wave Propagation in Tropical Thermospheric Region: Role of Varying Kinematic Viscosity. Journal of Geophysical Research: Space Physics. Scopus. https://doi.org/10.1029/2023JA032364
Abstract: The current study has investigated the thunderstorm induced atmospheric gravity waves (AGWs) over Indian region based on the perturbation signatures in ionospheric total electron content (TEC) measurement. Robust traveling ionospheric disturbance (TID) signature has been identified along the east side of the thunderstorm affected area. Neutral wind was found to have a favorable impact in this aspect for a certain time duration of the day by modulating the vertical wavelength. The role of temperature was analyzed in terms of kinematic viscosity which is a crucial component, especially over tropical region, for wave dissipation and reflection along its propagation path. Ray tracing algorithm is also applied with varying kinematic viscosity and thermal diffusivity for retrieval of possible ray paths and source location of observed waves. A statistical investigation has been carried out to identify the dissipation altitude of observed waves along the ray paths. It has been found that all waves dissipated at almost a constant altitude for a specific kinematic viscosity and above this altitude vertical wavelength was found to decrease. The ray paths interacted at a common point which was located at about 125 km altitude and was very close to the region of maximum lightning activity. It can also be noted that the observed phase velocities can't be achieved by a wave below the turbopause. It indicates that the observed waves were excited from a secondary source and not directly connected to convective system. The study provides an in-depth analysis of mesoscale system induced gravity wave propagation and dissipation over tropical region. © 2024. American Geophysical Union. All Rights Reserved.
URI: https://doi.org/10.1029/2023JA032364
https://dspace.iiti.ac.in/handle/123456789/14915
ISSN: 2169-9380
Type of Material: Journal Article
Appears in Collections:Department of Astronomy, Astrophysics and Space Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: