Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/14952
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamabadran, Swaminathanen_US
dc.date.accessioned2024-12-18T10:34:10Z-
dc.date.available2024-12-18T10:34:10Z-
dc.date.issued2024-
dc.identifier.citationNguyen, T. V., Le, H. D., Mai, V., Swaminathan, R., & Pham, A. T. (2024). Deep Reinforcement Learning for UAV Placement over Mixed FSO/RF-Based Non-Terrestrial Networks. 2024 IEEE VTS Asia Pacific Wireless Communications Symposium, APWCS 2024. Scopus. https://doi.org/10.1109/APWCS61586.2024.10679285en_US
dc.identifier.isbn979-8350361704-
dc.identifier.otherEID(2-s2.0-85206108369)-
dc.identifier.urihttps://doi.org/10.1109/APWCS61586.2024.10679285-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/14952-
dc.description.abstractNon-terrestrial Network (NTN) architecture, leveraging high-altitude platforms (HAP)-based free-space optical (FSO) backhaul and unmanned aerial vehicles (UAV) for radio frequency (RF) last-mile access, is a promising solution for the future 6G era. Nevertheless, the mobility of the end-users, together with time-varying turbulence/clouds in backhaul links, poses significant challenges in deploying UAVs to maximize the end-to-end network performance. This paper introduces a framework that utilizes deep reinforcement learning (DRL) to optimize UAV placement, considering both dynamic backhaul and access constraints. The results indicate that the trained agent can effectively learn from the environment, confirming its effectiveness in maintaining a relatively high end-to-end throughput performance. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2024 IEEE VTS Asia Pacific Wireless Communications Symposium, APWCS 2024en_US
dc.subjectdeep reinforcement learning (DRL)en_US
dc.subjectMixed FSO/RFen_US
dc.subjectNon-terrestrial networks (NTN)en_US
dc.subjectUAV placementen_US
dc.titleDeep Reinforcement Learning for UAV Placement over Mixed FSO/RF-Based Non-Terrestrial Networksen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: