Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Hitendraen_US
dc.date.accessioned2024-12-24T05:20:00Z-
dc.date.available2024-12-24T05:20:00Z-
dc.date.issued2024-
dc.identifier.citationCastellanos, L. R., Chaffee, R., Kumar, H., Mezgebo, B. K., Kassau, P., Peirano, G., Pitout, J. D. D., Kim, K., & Pillai, D. R. (2024). A novel machine-learning aided platform for rapid detection of urine ESBLs and carbapenemases: URECA-LAMP. Journal of Clinical Microbiology. Scopus. https://doi.org/10.1128/jcm.00869-24en_US
dc.identifier.issn0095-1137-
dc.identifier.otherEID(2-s2.0-85209156108)-
dc.identifier.urihttps://doi.org/10.1128/jcm.00869-24-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/15026-
dc.description.abstractPathogenic gram-negative bacteria frequently carry genes encoding extended-spectrum beta-lactamases (ESBL) and/or carbapenemases. Of great concern are carbapenem resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite the need for rapid AMR diagnostics globally, current molecular detection methods often require expensive equipment and trained personnel. Here, we present a novel machine-learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The platform consists of (i) an affordable device for sample lysis, LAMP amplification, and visual fluorometric detectionen_US
dc.description.abstract(ii) a LAMP screening panel to detect the most common ESBL and carbapenemase genesen_US
dc.description.abstractand (iii) a smartphone application for automated interpretation of results. Validation studies on clinical isolates and urine samples demonstrated percent positive and negative agreements above 95% for all targets. Accuracy, precision, and recall values of the machine learning model deployed in the smartphone application were all above 92%. Providing a simplified workflow, minimal operation training, and results in less than an hour, this study demonstrated the platform’s feasibility for near-patient testing in resource-limited settings. Copyright © 2024 Castellanos et al.en_US
dc.language.isoenen_US
dc.publisherAmerican Society for Microbiologyen_US
dc.sourceJournal of Clinical Microbiologyen_US
dc.subjectantimicrobial resistanceen_US
dc.subjectdiagnostic testsen_US
dc.subjectloop-mediated isothermal amplificationen_US
dc.subjectmachine learningen_US
dc.subjectnear-patient testingen_US
dc.subjectPOCTen_US
dc.subjectpoint-of-care testingen_US
dc.subjectUTIen_US
dc.titleA novel machine-learning aided platform for rapid detection of urine ESBLs and carbapenemases: URECA-LAMPen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access-
Appears in Collections:Department of Biosciences and Biomedical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: