Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15178
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMinhas, Harpriyaen_US
dc.contributor.authorJena, Milan Kumaren_US
dc.contributor.authorSharma, Rahul Kumaren_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2024-12-24T05:20:09Z-
dc.date.available2024-12-24T05:20:09Z-
dc.date.issued2024-
dc.identifier.citationMinhas, H., Jena, M. K., Sharma, R. K., & Pathak, B. (2024). Insights into Thermal Conductivity of Pnictogen Chalcogenides: Machine Learning Stereochemically Active Lone Pairs and Hybridization. Chemistry of Materials. Scopus. https://doi.org/10.1021/acs.chemmater.4c02294en_US
dc.identifier.issn0897-4756-
dc.identifier.otherEID(2-s2.0-85212201900)-
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.4c02294-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/15178-
dc.description.abstractStereochemically active lone pairs (SCALPs) are pivotal in influencing the lattice thermal conductivity (κL), representing a critical aspect in formulating strategies for achieving high thermoelectric performance. Despite the transformative potential of the material genome paradigm for screening materials with tailored properties, accurately describing SCALPs in terms of performance indicators remains a challenge. In this machine learning (ML) study, we introduce specialized chemical bonding descriptors that capture the empirical hidden influence of SCALP and chemical bonding hierarchies in pnictogen chalcogenide materials. The ML model, trained with screened data sets from the Open Quantum Materials Database, the Materials Project, and experimental reports, achieved a significant reduction in test error scores by using chemical bonding descriptors over conventional features in predicting κL values for pnictogen chalcogenides. We predict five materials, MnTl2As2S5, Ba2As2Se5, Bi14Te13S8, AgCu2PbBiS4, and Tl2SnAs2S6, exhibiting ultralow κL values of ≤0.40 W m-1 K-1 at room temperature. Additionally, we specified the precise ranges for ionicity, hybridization, number mismatch, and polarizability required for ultralow κL for 245 newly predicted materials. Our data-driven approach not only identifies promising candidates with ultralow κL but also reveals new avenues for the design of pnictogen-based thermoelectric materials, emphasizing the crucial influence of lone pairs and hybridization. © 2024 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceChemistry of Materialsen_US
dc.titleInsights into Thermal Conductivity of Pnictogen Chalcogenides: Machine Learning Stereochemically Active Lone Pairs and Hybridizationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: