Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15363
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaik, Amit Kumaren_US
dc.contributor.authorRamabadran, Swaminathanen_US
dc.date.accessioned2025-01-15T07:10:27Z-
dc.date.available2025-01-15T07:10:27Z-
dc.date.issued2024-
dc.identifier.citationKumar, G., Naik, A. K., R, S., & Singh, A. K. (2024). Gaussian Filtering With Cyber-Attacked Data. IEEE Signal Processing Letters, 31, 546–550. https://doi.org/10.1109/LSP.2024.3356825en_US
dc.identifier.issn1070-9908-
dc.identifier.otherEID(2-s2.0-85183950584)-
dc.identifier.urihttps://doi.org/10.1109/LSP.2024.3356825-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/15363-
dc.description.abstractGaussian filtering is a commonly used nonlinear filtering method. This letter proposes an advanced Gaussian filtering method for handling cyber-attacked measurement data. It considers three general forms of measurement data irregularities due to the attack, including false data injection (FDI), time asynchronous measurements (TAM), and denial-of-service (DoS). The proposed method introduces a modified measurement model to incorporate the possibility of these irregularities occurring simultaneously. Subsequently, it re-derives the traditional Gaussian filtering for the modified measurement model, resulting in the proposed filtering method. The improved accuracy of the proposed method is validated for two simulation problems. © 1994-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Signal Processing Lettersen_US
dc.subjectcyber-attackeden_US
dc.subjectGaussian filteringen_US
dc.subjectNonlinear filteringen_US
dc.subjectstochastic measurement modelingen_US
dc.titleGaussian Filtering with Cyber-Attacked Dataen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: