Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMouli, Sasanken_US
dc.date.accessioned2025-01-15T07:10:29Z-
dc.date.available2025-01-15T07:10:29Z-
dc.date.issued2024-
dc.identifier.citationMouli, S. (2024). Polynomial Calculus Sizes Over the Boolean and Fourier Bases are Incomparable. Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS. Scopus. https://doi.org/10.1109/FOCS61266.2024.00055en_US
dc.identifier.isbn979-833151674-1-
dc.identifier.issn0272-5428-
dc.identifier.otherEID(2-s2.0-85213007331)-
dc.identifier.urihttps://doi.org/10.1109/FOCS61266.2024.00055-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/15393-
dc.description.abstractFor every n > 0, we show the existence of a CNF tautology over O(n2) variables of width O(log n) such that it has a Polynomial Calculus Resolution refutation over 0,1 variables of size O(n3 polylog} (n)) but any Polynomial Calculus refutation over {+1, -1} variables requires size 2Ω(n). This shows that Polynomial Calculus sizes over the {0, 1} and +1, -1 bases are incomparable (since Tseitin tautologies show a separation in the other direction) and answers an open problem posed by Sokolov [1] and Razborov [2]. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCSen_US
dc.subjectFourier basisen_US
dc.subjectPolynomial Calculusen_US
dc.subjectProof complexityen_US
dc.titlePolynomial Calculus Sizes Over the Boolean and Fourier Bases are Incomparableen_US
dc.typeConference Paperen_US
dc.rights.licenseAll Open Access-
dc.rights.licenseGreen Open Access-
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: