Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/15393
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mouli, Sasank | en_US |
dc.date.accessioned | 2025-01-15T07:10:29Z | - |
dc.date.available | 2025-01-15T07:10:29Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Mouli, S. (2024). Polynomial Calculus Sizes Over the Boolean and Fourier Bases are Incomparable. Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS. Scopus. https://doi.org/10.1109/FOCS61266.2024.00055 | en_US |
dc.identifier.isbn | 979-833151674-1 | - |
dc.identifier.issn | 0272-5428 | - |
dc.identifier.other | EID(2-s2.0-85213007331) | - |
dc.identifier.uri | https://doi.org/10.1109/FOCS61266.2024.00055 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/15393 | - |
dc.description.abstract | For every n > 0, we show the existence of a CNF tautology over O(n2) variables of width O(log n) such that it has a Polynomial Calculus Resolution refutation over 0,1 variables of size O(n3 polylog} (n)) but any Polynomial Calculus refutation over {+1, -1} variables requires size 2Ω(n). This shows that Polynomial Calculus sizes over the {0, 1} and +1, -1 bases are incomparable (since Tseitin tautologies show a separation in the other direction) and answers an open problem posed by Sokolov [1] and Razborov [2]. © 2024 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE Computer Society | en_US |
dc.source | Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS | en_US |
dc.subject | Fourier basis | en_US |
dc.subject | Polynomial Calculus | en_US |
dc.subject | Proof complexity | en_US |
dc.title | Polynomial Calculus Sizes Over the Boolean and Fourier Bases are Incomparable | en_US |
dc.type | Conference Paper | en_US |
dc.rights.license | All Open Access | - |
dc.rights.license | Green Open Access | - |
Appears in Collections: | Department of Computer Science and Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: