Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, Vidya Bhaskeren_US
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2025-02-04T14:30:53Z-
dc.date.available2025-02-04T14:30:53Z-
dc.date.issued2024-
dc.identifier.citationJain, S., Singya, P. K., Shukla, V. B., Majhi, S., & Bhatia, V. (2024). Nonlinear Sparse Channel Estimator for Hybrid MIMO Millimeter Wave Communication. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC. Scopus. https://doi.org/10.1109/PIMRC59610.2024.10817466en_US
dc.identifier.issn2166-9570-
dc.identifier.otherEID(2-s2.0-85215976539)-
dc.identifier.urihttps://doi.org/10.1109/PIMRC59610.2024.10817466-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/15642-
dc.description.abstractThe multi-input multi-output (MIMO) millimeter wave (mmWave) is a promising technology for beyond 5G communication systems, which provides high data rates, ultra-low latency, massive connectivity, and high spectral efficiency. However, a typical mmWave communication link is severely impaired by path loss, nonlinear device impairments, and non-Gaussian noise. Furthermore, MIMO mmWave channel exhibits sparseness due to blockage and scattering. The conventional orthogonal matching pursuit (OMP), zero-attracting least mean square (ZA-LMS), and their variants deliver suboptimal performance for nonlinear mmWave systems. To improve the estimation accuracy, we propose a random Fourier features (RFF) based sparsity-aware kernel maximum correntropy (SA-KMC) algorithm, which is robust for MIMO mmWave sparse channel estimation in the presence of nonlinear hardware impairments and non-Gaussian distortions. Simulations indicate that the proposed RFF-SA-MCC algorithm outperforms the existing state-of-art approaches. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRCen_US
dc.subjectchannel estimationen_US
dc.subjecthardware impairmentsen_US
dc.subjectmaximum correntropy criterionen_US
dc.subjectMillimeter waveen_US
dc.subjectMIMOen_US
dc.subjectrandom Fourier featuresen_US
dc.subjectsparsityawareen_US
dc.titleNonlinear Sparse Channel Estimator for Hybrid MIMO Millimeter Wave Communicationen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: