Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/15923
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abbas, Zahir | en_US |
dc.date.accessioned | 2025-04-22T17:45:33Z | - |
dc.date.available | 2025-04-22T17:45:33Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Iqbal, S., Muqeet Rehman, M., Abbas, Z., Sardar, S. A., Saqib, M., Yang, Y., & Kim, W. Y. (2025). High Performance Triboelectric Nanogenerator Based on Metal–Organic Framework Composites for IoT-Assisted Wireless Healthcare Monitoring. Energy and Environmental Materials. https://doi.org/10.1002/eem2.70010 | en_US |
dc.identifier.issn | 2575-0348 | - |
dc.identifier.other | EID(2-s2.0-105002620547) | - |
dc.identifier.uri | https://doi.org/10.1002/eem2.70010 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/15923 | - |
dc.description.abstract | Metal–organic frameworks (MOFs) are known for their high porosity and stability, making them ideal for various applications, including energy harvesting. A simple synthesis method was used to synthesize zinc-based metal–organic frameworks (Zn-MOFs) and introduce them into an ultra-stretchable Ecoflex polymer as functional fillers. We developed triboelectric nano generator (TENG) devices using Ecoflex, both pristine and modified with different Zn-MOF concentrations, to evaluate their performance. The output voltage, current, and instantaneous power of Zn-MOF-modified Ecoflex TENG devices were 3, 4, and 5 times higher than pristine Ecoflex TENGs. This improvement is due to Zn-MOF's large surface area, porous structure, charge trapping sites, improved surface roughness, and electron cloud conduction. The improved TENG device achieved 36 mW of maximum power and 40 mW m−2 power density. The Flexible TENG device powered LEDs and stored energy in capacitors by converting mechanical energy into electrical energy. We integrated flexible TENG device into cardiac patients' shoes to monitor running speeds and identify dangerous velocities using wireless IoT cloud monitoring. Real-time notifications and wireless data transmission to families and emergency personnel allowed immediate assistance. © 2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Inc | en_US |
dc.source | Energy and Environmental Materials | en_US |
dc.subject | flexible polymer | en_US |
dc.subject | health care monitoring | en_US |
dc.subject | IoT applications | en_US |
dc.subject | metal organic framework (MOF) | en_US |
dc.subject | triboelectric nanogenerator | en_US |
dc.subject | wearable electronics | en_US |
dc.title | High Performance Triboelectric Nanogenerator Based on Metal–Organic Framework Composites for IoT-Assisted Wireless Healthcare Monitoring | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access | - |
dc.rights.license | Hybrid Gold Open Access | - |
Appears in Collections: | Department of Chemistry |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: