Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/16257
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maji, Bibekananda | en_US |
dc.date.accessioned | 2025-06-16T05:48:08Z | - |
dc.date.available | 2025-06-16T05:48:08Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Shakya, B., Jha, A. K., Maji, B., & Pal, M. (2025). An asymptotic expansion for a Lambert series associated to Siegel cusp forms of degree n. International Journal of Number Theory. https://doi.org/10.1142/S1793042125500988 | en_US |
dc.identifier.issn | 1793-0421 | - |
dc.identifier.other | EID(2-s2.0-105007050580) | - |
dc.identifier.uri | https://dx.doi.org/10.1142/S1793042125500988 | - |
dc.identifier.uri | https://dspace.iiti.ac.in:8080/jspui/handle/123456789/16257 | - |
dc.description.abstract | Utilizing inverse Mellin transform of the symmetric square L-function attached to Ramanujan tau function, Hafner and Stopple proved a conjecture of Zagier, which states that the constant term of the automorphic function y12|Δ(z)|2, i.e. the Lambert series y12∑ n=1∞τ(n)2e-4πny can be expressed in terms of the nontrivial zeros of the Riemann zeta function. This study examines certain Lambert series associated to Siegel cusp forms of degree n twisted by a character χ and observes a similar phenomenon. © 2025 World Scientific Publishing Company. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific | en_US |
dc.source | International Journal of Number Theory | en_US |
dc.subject | Lambert series | en_US |
dc.subject | nontrivial zeros | en_US |
dc.subject | Rankin-Selberg L -function | en_US |
dc.subject | Riemann zeta function | en_US |
dc.subject | Siegel cusp forms | en_US |
dc.title | An asymptotic expansion for a Lambert series associated to Siegel cusp forms of degree n | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: