Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16257
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2025-06-16T05:48:08Z-
dc.date.available2025-06-16T05:48:08Z-
dc.date.issued2025-
dc.identifier.citationShakya, B., Jha, A. K., Maji, B., & Pal, M. (2025). An asymptotic expansion for a Lambert series associated to Siegel cusp forms of degree n. International Journal of Number Theory. https://doi.org/10.1142/S1793042125500988en_US
dc.identifier.issn1793-0421-
dc.identifier.otherEID(2-s2.0-105007050580)-
dc.identifier.urihttps://dx.doi.org/10.1142/S1793042125500988-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16257-
dc.description.abstractUtilizing inverse Mellin transform of the symmetric square L-function attached to Ramanujan tau function, Hafner and Stopple proved a conjecture of Zagier, which states that the constant term of the automorphic function y12|Δ(z)|2, i.e. the Lambert series y12∑ n=1∞τ(n)2e-4πny can be expressed in terms of the nontrivial zeros of the Riemann zeta function. This study examines certain Lambert series associated to Siegel cusp forms of degree n twisted by a character χ and observes a similar phenomenon. © 2025 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.sourceInternational Journal of Number Theoryen_US
dc.subjectLambert seriesen_US
dc.subjectnontrivial zerosen_US
dc.subjectRankin-Selberg L -functionen_US
dc.subjectRiemann zeta functionen_US
dc.subjectSiegel cusp formsen_US
dc.titleAn asymptotic expansion for a Lambert series associated to Siegel cusp forms of degree nen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: