Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHegde, Suhas G.en_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2025-07-09T13:48:00Z-
dc.date.available2025-07-09T13:48:00Z-
dc.date.issued2025-
dc.identifier.citationHegde, S., & Tiwari, A. (2025). TexStFusion : a controllable diffusion model using textural, structural, and textual feature fusion. Signal, Image and Video Processing. https://doi.org/10.1007/s11760-025-04367-2en_US
dc.identifier.issn1863-1703-
dc.identifier.otherEID(2-s2.0-105008685471)-
dc.identifier.urihttps://dx.doi.org/10.1007/s11760-025-04367-2-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16393-
dc.description.abstractRecent advances in Text-to-Image (T2I) diffusion models enable highly realistic image generation from text. However, long and intricate descriptions often struggle to provide precise controls. To address this, we propose TexStFusion (TEXtural, STructural, TEXtual feature FUSION), a method that adds conditional controls to pre-trained T2I models. Unlike existing approaches relying on visual cues, we introduce composite maps, which fuse texture and structure-text maps derived from TextureNet and StructureNet encoders. This integration occurs without fine-tuning the T2I model, preserving prior knowledge. Our method achieves 25% better FID, 33% better SSIM, and 5% better CLIP-T scores with a dataset of just 30k images, in the best case. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceSignal, Image and Video Processingen_US
dc.subjectControllable diffusion modelsen_US
dc.subjectImage editingen_US
dc.subjectImage generationen_US
dc.subjectText-to-Image diffusion modelsen_US
dc.titleTexStFusion : a controllable diffusion model using textural, structural, and textual feature fusionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: