Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatterjee, Dyutien_US
dc.contributor.authorMittal, Snehaen_US
dc.contributor.authorJena, Milan Kumaren_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2025-09-04T12:41:57Z-
dc.date.available2025-09-04T12:41:57Z-
dc.date.issued2025-
dc.identifier.citationChatterjee, D., Mittal, S., Jena, M. K., & Pathak, B. (2025). Machine Learning Boosted Quantum-Profiling of Blood Antigens. Journal of Physical Chemistry Letters, 16, 7824–7833. https://doi.org/10.1021/acs.jpclett.5c01461en_US
dc.identifier.issn1948-7185-
dc.identifier.otherEID(2-s2.0-105013157438)-
dc.identifier.urihttps://dx.doi.org/10.1021/acs.jpclett.5c01461-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16664-
dc.description.abstractThe molecular-level characterization of glycans, a challenging yet highly desirable goal, is crucial for the comprehensive advancement of glycosciences. Despite significant advances in analytical techniques, including NMR and mass spectrometry, structural and configurational complexity hinders the ability to identify carbohydrates, especially high-order saccharides with regioisomeric glycosidic linkages. In this article, we present a computational methodology that utilizes a quantum tunneling method coupled with machine learning (ML) to recognize a wide range of blood antigens simultaneously. Random forest classifier with SHapley Additive exPlanations (SHAP) interpretability performs rapid quantum profiling of all considered molecules with good precision and sensitivity. Our proposed ML-enhanced quantum methodology offers a powerful alternative to conventional techniques, facilitating accurate and high-throughput characterization of carbohydrates by performing “sugar calling” from their transmission signatures. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceJournal of Physical Chemistry Lettersen_US
dc.subjectPolysaccharidesen_US
dc.subjectBlooden_US
dc.subjectDecision Treesen_US
dc.subjectElectron Tunnelingen_US
dc.subjectLearning Systemsen_US
dc.subjectMachine Learningen_US
dc.subjectMass Spectrometryen_US
dc.subjectRandom Forestsen_US
dc.subjectComputational Methodologyen_US
dc.subjectGlycansen_US
dc.subjectGlycosidic Linkagesen_US
dc.subjectHigh-orderen_US
dc.subjectHigher-orderen_US
dc.subjectMachine-learningen_US
dc.subjectMolecular Levelsen_US
dc.subjectQuantum Tunnelingen_US
dc.subjectRandom Forest Classifieren_US
dc.subjectShapleyen_US
dc.subjectAntigensen_US
dc.subjectPolysaccharideen_US
dc.subjectChemistryen_US
dc.subjectHumanen_US
dc.subjectMachine Learningen_US
dc.subjectQuantum Theoryen_US
dc.subjectHumansen_US
dc.subjectMachine Learningen_US
dc.subjectPolysaccharidesen_US
dc.subjectQuantum Theoryen_US
dc.titleMachine Learning Boosted Quantum-Profiling of Blood Antigensen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: