Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16681
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohapatra, Lokanathen_US
dc.contributor.authorSonwane, Akshay Kumaren_US
dc.contributor.authorSamal, Sonalien_US
dc.contributor.authorChauhan, Tusharen_US
dc.contributor.authorKushwaha, Ajay Kumaren_US
dc.date.accessioned2025-09-04T12:41:58Z-
dc.date.available2025-09-04T12:41:58Z-
dc.date.issued2025-
dc.identifier.citationMohapatra, L., Sonwane, A. K., Samal, S., Chauhan, T., Garg, P., Deshpande, U., Tiwari, M. K., & Kushwaha, A. K. (2025). Enhancing the photocatalytic water electrolysis performance of Zn2SnO4 nanostructures via post-synthesis nitrogen doping. Nanoscale, 17(32), 18852–18865. https://doi.org/10.1039/d5nr01576fen_US
dc.identifier.issn2040-3364-
dc.identifier.issn2040-3372-
dc.identifier.otherEID(2-s2.0-105013148272)-
dc.identifier.urihttps://dx.doi.org/10.1039/d5nr01576f-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16681-
dc.description.abstractNitrogen-doped Zn<inf>2</inf>SnO<inf>4</inf> nanostructures were developed via hydrothermal treatment. Urea (CH<inf>4</inf>N<inf>2</inf>O) was used as the nitrogen source to achieve post-growth nitrogen doping in Zn<inf>2</inf>SnO<inf>4</inf> nanostructures. Nitrogen doping resulted in morphological distortion. The elemental study proved that nitrogen concentration increased with an increase in the concentration of urea in the precursor solutions. The vibration modes corresponding to the Zn-N and Sn-N bonds confirmed the incorporation of nitrogen into the crystal lattice of Zn<inf>2</inf>SnO<inf>4</inf>. XPS analysis revealed that higher nitrogen doping concentrations led to the substitutional incorporation of nitrogen. Nitrogen doping in Zn<inf>2</inf>SnO<inf>4</inf> introduced impurity levels in the electronic band structure and reduced its optical band gap (from 2.7 eV to 2.4 eV). Consequently, the Zn<inf>2</inf>SnO<inf>4</inf> nanostructure with approximately 1.9 at% nitrogen showed the highest photocurrent density of 124 μA cm−2 at 1.23 V vs. RHE, representing approximately 2.6-fold improvement in photocurrent compared to that of undoped Zn<inf>2</inf>SnO<inf>4</inf> nanostructures. Optimized nitrogen doping resulted in approximately 89% charge injection efficiency along with the lowest charge transfer resistance. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceNanoscaleen_US
dc.subjectNitrogenen_US
dc.subjectUreaen_US
dc.subjectComplexationen_US
dc.subjectCrystal Impuritiesen_US
dc.subjectDoping (additives)en_US
dc.subjectNanostructuresen_US
dc.subjectNitrogenen_US
dc.subjectNitrogen Compoundsen_US
dc.subjectTin Compoundsen_US
dc.subjectZinc Compoundsen_US
dc.subjectCh 4en_US
dc.subjectHydrothermal Treatmentsen_US
dc.subjectMorphological Distortionen_US
dc.subjectNitrogen Sourcesen_US
dc.subjectNitrogen-dopeden_US
dc.subjectNitrogen-dopingen_US
dc.subjectPerformanceen_US
dc.subjectPhoto-catalyticen_US
dc.subjectPostsynthesisen_US
dc.subjectWater Electrolysisen_US
dc.subjectCharge Transferen_US
dc.subjectEnergy Gapen_US
dc.subjectNanomaterialen_US
dc.subjectNitrogenen_US
dc.subjectUreaen_US
dc.subjectArticleen_US
dc.subjectControlled Studyen_US
dc.subjectCrystal Structureen_US
dc.subjectNitrogen Concentrationen_US
dc.subjectNonhumanen_US
dc.subjectPharmaceuticsen_US
dc.subjectSynthesisen_US
dc.subjectVibrationen_US
dc.subjectWater Electrolysisen_US
dc.titleEnhancing the photocatalytic water electrolysis performance of Zn2SnO4 nanostructures via post-synthesis nitrogen dopingen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: