Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16703
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBabitaen_US
dc.contributor.authorAkash, Kadali Srien_US
dc.contributor.authorSajid, M.en_US
dc.contributor.authorNayak, Deepak Ranjanen_US
dc.contributor.authorTanveer, Mohammad Sayeden_US
dc.date.accessioned2025-09-04T12:47:43Z-
dc.date.available2025-09-04T12:47:43Z-
dc.date.issued2026-
dc.identifier.citationAkash, K. S., Sajid, M., Nayak, D. R., & Tanveer, M. (2026). CaDT-Net: A Cascaded Deformable Transformer Network for Multiclass Breast Cancer Histopathological Image Classification. Lecture Notes in Computer Science, 15292 LNCS, 361–372. https://doi.org/10.1007/978-981-96-6594-5_26en_US
dc.identifier.isbn978-9819698936-
dc.identifier.isbn9789819698042-
dc.identifier.isbn9789819698110-
dc.identifier.isbn9789819698905-
dc.identifier.isbn9789819698141-
dc.identifier.isbn9783031984136-
dc.identifier.isbn9789819500086-
dc.identifier.isbn9789819665938-
dc.identifier.isbn9789819681969-
dc.identifier.isbn9783031945618-
dc.identifier.issn1611-3349-
dc.identifier.issn0302-9743-
dc.identifier.otherEID(2-s2.0-105012354906)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-981-96-6594-5_26-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16703-
dc.description.abstractMulticlass classification of breast cancer histopathological images is crucial for clinical applications, and it is a challenging task due to the intricate similarities within classes, the extensive variability in appearance across high-resolution images, and the considerable inhomogeneity in color distribution. Despite the noteworthy advancements of convolutional neural networks (CNNs) in histopathological imaging, they often struggle to comprehensively capture the intricate details in histopathological images. On the other hand, vision transformers (ViTs) show promise in learning complex visual patterns but have limited capability in exploring local contextual information. In addition, they face challenges when applied to medical image analysis tasks due to high data requirements and computational costs. To address these challenges, this paper presents a novel cascaded deformable transformer network named CaDT-Net for effective multiclass breast cancer classification through histopathological images. Specifically, we propose a cascaded deformable transformer layer (CDTL), which is placed after a pre-trained convolutional ViT model (MaxViT) to enable modeling global-local feature interactions, allowing it to learn fine-grained feature representations. Further, the proposed CDTL offers the advantage of using deformable convolution, which enhances the model’s ability to adapt suitably to complex and diverse lesion patterns. Extensive experiments on a benchmark BreaKHis dataset and a comparative analysis with state-of-the-art methods exhibit the superior performance of CaDT-Net. Notably, it achieves an accuracy of 97.32%, 97.75%, 98.67%, and 97.25% for 40×, 100×, 200×, and 400× magnifications, respectively. Our code is available at: https://github.com/skb999/CaDT-Net. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Computer Scienceen_US
dc.subjectBreast Canceren_US
dc.subjectCadt-neten_US
dc.subjectDeformable Convolutionen_US
dc.subjectHistopathological Imageen_US
dc.subjectSelf-attentionen_US
dc.subjectVision Transformeren_US
dc.subjectBenchmarkingen_US
dc.subjectBiomedical Engineeringen_US
dc.subjectCascade Control Systemsen_US
dc.subjectClassification (of Information)en_US
dc.subjectComplex Networksen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectImage Analysisen_US
dc.subjectImage Classificationen_US
dc.subjectMedical Computingen_US
dc.subjectMedical Image Processingen_US
dc.subjectBreast Canceren_US
dc.subjectCadt-neten_US
dc.subjectClinical Applicationen_US
dc.subjectDeformable Convolutionen_US
dc.subjectHistopathological Imagesen_US
dc.subjectImages Classificationen_US
dc.subjectMulti-class Classificationen_US
dc.subjectSelf-attentionen_US
dc.subjectVision Transformeren_US
dc.subjectWithin Classen_US
dc.subjectDiseasesen_US
dc.titleCaDT-Net: A Cascaded Deformable Transformer Network for Multiclass Breast Cancer Histopathological Image Classificationen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: