Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16714
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakrabartty, Surabhien_US
dc.contributor.authorSingh, Ranveeren_US
dc.date.accessioned2025-09-04T12:47:43Z-
dc.date.available2025-09-04T12:47:43Z-
dc.date.issued2025-
dc.identifier.citationChakrabartty, S., & Singh, R. (2025). Permanent of Bipartite Graphs in Terms of Determinants. Lecture Notes in Computer Science, 15885 LNCS, 188–200. https://doi.org/10.1007/978-3-031-98740-3_14en_US
dc.identifier.isbn9789819698936-
dc.identifier.isbn9789819698042-
dc.identifier.isbn9789819698110-
dc.identifier.isbn9789819698905-
dc.identifier.isbn9789819698141-
dc.identifier.isbn9783031984136-
dc.identifier.isbn9789819500086-
dc.identifier.isbn9789819665938-
dc.identifier.isbn9789819681969-
dc.identifier.isbn9783031945618-
dc.identifier.issn1611-3349-
dc.identifier.issn0302-9743-
dc.identifier.otherEID(2-s2.0-105011960280)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-031-98740-3_14-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16714-
dc.description.abstractComputing the permanent of a (0, 1)-matrix is a well-known #P-complete problem. In this paper, we present an expression for the permanent of a bipartite graph in terms of the determinant of the graph and its subgraphs, obtained by successively removing rows and columns corresponding to vertices involved in vertex-disjoint 4k-cycles. Our formula establishes a general relationship between the permanent and the determinant for any bipartite graph. Since computing the permanent of a biadjacency matrix is equivalent to counting the number of its perfect matchings, this approach also provides a more efficient method for counting perfect matchings in certain types of bipartite graphs. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Computer Scienceen_US
dc.subject4k-cyclesen_US
dc.subjectBipartite Graphsen_US
dc.subjectPerfect Matchingen_US
dc.subjectPermanenten_US
dc.subjectGraph Algorithmsen_US
dc.subjectGraphic Methodsen_US
dc.subjectMatrix Algebraen_US
dc.subject0-1 Matrixesen_US
dc.subject4k-cycleen_US
dc.subjectBipartite Graphsen_US
dc.subjectMatrixen_US
dc.subjectP-complete Problemen_US
dc.subjectPerfect Matchingsen_US
dc.subjectPermanenten_US
dc.subjectSubgraphsen_US
dc.subjectVertex Disjointen_US
dc.subjectUndirected Graphsen_US
dc.titlePermanent of Bipartite Graphs in Terms of Determinantsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: