Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/16714
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chakrabartty, Surabhi | en_US |
dc.contributor.author | Singh, Ranveer | en_US |
dc.date.accessioned | 2025-09-04T12:47:43Z | - |
dc.date.available | 2025-09-04T12:47:43Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Chakrabartty, S., & Singh, R. (2025). Permanent of Bipartite Graphs in Terms of Determinants. Lecture Notes in Computer Science, 15885 LNCS, 188–200. https://doi.org/10.1007/978-3-031-98740-3_14 | en_US |
dc.identifier.isbn | 9789819698936 | - |
dc.identifier.isbn | 9789819698042 | - |
dc.identifier.isbn | 9789819698110 | - |
dc.identifier.isbn | 9789819698905 | - |
dc.identifier.isbn | 9789819698141 | - |
dc.identifier.isbn | 9783031984136 | - |
dc.identifier.isbn | 9789819500086 | - |
dc.identifier.isbn | 9789819665938 | - |
dc.identifier.isbn | 9789819681969 | - |
dc.identifier.isbn | 9783031945618 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.other | EID(2-s2.0-105011960280) | - |
dc.identifier.uri | https://dx.doi.org/10.1007/978-3-031-98740-3_14 | - |
dc.identifier.uri | https://dspace.iiti.ac.in:8080/jspui/handle/123456789/16714 | - |
dc.description.abstract | Computing the permanent of a (0, 1)-matrix is a well-known #P-complete problem. In this paper, we present an expression for the permanent of a bipartite graph in terms of the determinant of the graph and its subgraphs, obtained by successively removing rows and columns corresponding to vertices involved in vertex-disjoint 4k-cycles. Our formula establishes a general relationship between the permanent and the determinant for any bipartite graph. Since computing the permanent of a biadjacency matrix is equivalent to counting the number of its perfect matchings, this approach also provides a more efficient method for counting perfect matchings in certain types of bipartite graphs. © 2025 Elsevier B.V., All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.source | Lecture Notes in Computer Science | en_US |
dc.subject | 4k-cycles | en_US |
dc.subject | Bipartite Graphs | en_US |
dc.subject | Perfect Matching | en_US |
dc.subject | Permanent | en_US |
dc.subject | Graph Algorithms | en_US |
dc.subject | Graphic Methods | en_US |
dc.subject | Matrix Algebra | en_US |
dc.subject | 0-1 Matrixes | en_US |
dc.subject | 4k-cycle | en_US |
dc.subject | Bipartite Graphs | en_US |
dc.subject | Matrix | en_US |
dc.subject | P-complete Problem | en_US |
dc.subject | Perfect Matchings | en_US |
dc.subject | Permanent | en_US |
dc.subject | Subgraphs | en_US |
dc.subject | Vertex Disjoint | en_US |
dc.subject | Undirected Graphs | en_US |
dc.title | Permanent of Bipartite Graphs in Terms of Determinants | en_US |
dc.type | Conference Paper | en_US |
Appears in Collections: | Department of Computer Science and Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: