Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16719
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Asish Kumaren_US
dc.contributor.authorKumar, Sunilen_US
dc.date.accessioned2025-09-04T12:47:44Z-
dc.date.available2025-09-04T12:47:44Z-
dc.date.issued2025-
dc.identifier.citationDas, A. K., & Kumar, S. (2025). Compositionally Tuned High-Entropy Li-Garnet Electrolyte for Advanced Solid-State Batteries. Batteries and Supercaps. https://doi.org/10.1002/batt.202500358en_US
dc.identifier.issn2566-6223-
dc.identifier.otherEID(2-s2.0-105012272149)-
dc.identifier.urihttps://dx.doi.org/10.1002/batt.202500358-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16719-
dc.description.abstractThe advancement of all-solid-state lithium batteries (ASSLBs) hinges on developing highly conductive and chemically stable solid electrolytes. High-entropy ceramics leveraged from high configurational entropy and synergistic interactions among the elements have emerged as a rapidly expanding class of high-entropy materials, attracting significant attention due to their exceptional properties. Here, a high-entropy Li-stuffed garnet (HEG) solid electrolyte, Li<inf>7</inf>La<inf>3</inf>Zr<inf>0.5</inf>Hf<inf>0.5</inf>Sc<inf>0.5</inf>Nb<inf>0.25</inf>Ta<inf>0.25</inf>O<inf>1</inf><inf>2</inf>, crystallizing in a highly Li+ conductive (≈1.25 × 10−4S cm−1 at room temperature) cubic phase, is reported. Electrochemical evaluations demonstrate excellent stability against lithium metal, with symmetric Li|HEG|Li cells sustaining stable Li plating/stripping beyond 550 cycles at 0.4 mA cm−2. Furthermore, full-cell integration with LiFePO<inf>4</inf> cathodes exhibits high capacity retention (≈99% over 500 cycles), confirming its potential for high-performance ASSLBs. Further, the HEG solid electrolyte is compatible with high-voltage LiMn<inf>2</inf>O<inf>4</inf> cathode (mass loading ≈16.6 mg cm−2), retaining 96% capacity over 100 cycles (at 0.2C). These findings establish a framework for tailoring high-entropy garnet electrolytes, paving the way for next-generation solid-state battery technologies. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.sourceBatteries and Supercapsen_US
dc.subjectAll-solid-state Lithium Batteriesen_US
dc.subjectGarneten_US
dc.subjectHigh-entropyen_US
dc.subjectIonic Conductivityen_US
dc.subjectSolid Electrolytesen_US
dc.subjectCathodesen_US
dc.subjectEntropyen_US
dc.subjectFluorine Compoundsen_US
dc.subjectIonic Conduction In Solidsen_US
dc.subjectIonic Conductivityen_US
dc.subjectIron Compoundsen_US
dc.subjectLithiumen_US
dc.subjectLithium Compoundsen_US
dc.subjectLithium-ion Batteriesen_US
dc.subjectPhosphorus Compoundsen_US
dc.subjectSolid State Device Structuresen_US
dc.subjectSolid-state Batteriesen_US
dc.subjectTantalum Compoundsen_US
dc.subjectAll-solid-state Lithium Batteryen_US
dc.subjectConfigurational Entropyen_US
dc.subjectCubic Phaseen_US
dc.subjectElectrochemical Evaluationsen_US
dc.subjectHigh-entropyen_US
dc.subjectLi +en_US
dc.subjectLi Garnetsen_US
dc.subjectPropertyen_US
dc.subjectSolid State Batteriesen_US
dc.subjectSynergistic Interactionen_US
dc.subjectSolid Electrolytesen_US
dc.titleCompositionally Tuned High-Entropy Li-Garnet Electrolyte for Advanced Solid-State Batteriesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: