Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGanaie, M. A.en_US
dc.contributor.authorRohan, Jhaen_US
dc.contributor.authorAgrawal, Krishen_US
dc.contributor.authorShah, Rupalen_US
dc.contributor.authorGirard, Anouck Renéeen_US
dc.contributor.authorKasa-Vubu, Josephine Z.en_US
dc.contributor.authorTanveer, Mohammad Sayeden_US
dc.date.accessioned2025-09-04T12:47:44Z-
dc.date.available2025-09-04T12:47:44Z-
dc.date.issued2025-
dc.identifier.citationGanaie, M. A., Rohan, J., Agrawal, K., Shah, R., Girard, A., Kasa-Vubu, J., & Tanveer, M. (2025). Convolutional and ℓ21-norm neural network for bone age estimation. Applied Soft Computing, 182. Scopus. https://doi.org/10.1016/j.asoc.2025.113456en_US
dc.identifier.issn1568-4946-
dc.identifier.otherEID(2-s2.0-105010917393)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.asoc.2025.113456-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16723-
dc.description.abstractBone age (BA) assessment is critical for evaluating children for potential endocrine, genetic and growth disorders. The evaluation of BA reading may vary among the readers. We use an Inception-v3 convolutional neural network to extract features and propose the novel ℓ<inf>21</inf>-norm random vector functional link neural network (LR21-RVFL) for the automatic assessment of bone age. Random vector functional link neural network (RVFL) suffers in the presence of noise and outliers due to the squared loss function. To overcome these challenges, we incorporate an ℓ<inf>21</inf>-norm-based loss function in the RVFL model to improve the robustness of the model. Moreover, we used ℓ<inf>21</inf>-based regularization to suppress the redundant/irrelevant features and hence, generate a less complex model. The proposed LR21-RVFL model achieves better performance compared to baseline models (except R21-RVFL) in bone age prediction. Moreover, we evaluate the models on the classification of UCI and KEEL datasets. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceApplied Soft Computingen_US
dc.subjectBone Age Estimationen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectL21 Normen_US
dc.subjectRandom Vector Functional Link Networken_US
dc.subjectBoneen_US
dc.subjectClassification (of Information)en_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectFunction Evaluationen_US
dc.subjectLearning Systemsen_US
dc.subjectAge Estimationen_US
dc.subjectBone Ageen_US
dc.subjectBone Age Estimationen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectFunctional Link Neural Networken_US
dc.subjectFunctional-link Networken_US
dc.subjectL21 Normen_US
dc.subjectLearning Machinesen_US
dc.subjectRandom Vector Functional Link Networken_US
dc.subjectRandom Vectorsen_US
dc.subjectConvolutionen_US
dc.titleConvolutional and ℓ21-norm neural network for bone age estimationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering
Department of Electrical Engineering
Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: