Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16730
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Akshayen_US
dc.contributor.authorChoudhary, Pushpaen_US
dc.contributor.authorParida, Manoranjanen_US
dc.date.accessioned2025-09-04T12:47:44Z-
dc.date.available2025-09-04T12:47:44Z-
dc.date.issued2025-
dc.identifier.citationGupta, A., Choudhary, P., & Parida, M. (2025). Dynamic Road Boundary Detection Using Sparse 3D-LiDAR in Complex Road and Environmental Conditions. Transportation Research Record. https://doi.org/10.1177/03611981251342781en_US
dc.identifier.isbn0309099781-
dc.identifier.isbn9780309041157-
dc.identifier.isbn9780309044653-
dc.identifier.isbn9780309099905-
dc.identifier.isbn9780309104234-
dc.identifier.isbn9780309295475-
dc.identifier.isbn9780309099585-
dc.identifier.isbn9780309295376-
dc.identifier.isbn9780309441742-
dc.identifier.isbn030904121X-
dc.identifier.issn0361-1981-
dc.identifier.issn2169-4052-
dc.identifier.otherEID(2-s2.0-105012765722)-
dc.identifier.urihttps://dx.doi.org/10.1177/03611981251342781-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16730-
dc.description.abstractThe integration of autonomous vehicles into the mainstream transportation system requires advanced perception technologies to accurately detect and navigate road boundaries. This study addresses the challenge by utilizing a cost-effective 16-beam light detection and ranging (LiDAR) sensor combined with robust data processing techniques. The experiments were conducted in various environments using an instrumented vehicle. Ground and non-ground points were segregated using the random sample consensus (RANSAC) algorithm. The road boundary detection algorithm utilized the shortest-beam method and median filtering. This approach was used to enhance detection accuracy even in complex road and environmental conditions, such as different types of intersection, adverse weather, and varying terrain and lighting conditions. The RANSAC polynomial fitting method was used to fit the road boundaries. This methodology demonstrates significant improvements in identifying road boundaries, proving to be a viable alternative to more expensive, high-resolution LiDAR systems. Experimental results highlight the stability of the proposed approach, showing its potential to facilitate the broader adoption of autonomous driving technology by making it more economically accessible and scalable. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSAGE Publications Ltden_US
dc.sourceTransportation Research Recorden_US
dc.subjectAutomated Vehiclesen_US
dc.subjectData Analyticsen_US
dc.subjectData And Data Scienceen_US
dc.subjectMachine Learningen_US
dc.subjectOperationsen_US
dc.subjectVehicle-highway Automationen_US
dc.subjectAutomobile Driversen_US
dc.subjectAutonomous Vehiclesen_US
dc.subjectCost Effectivenessen_US
dc.subjectData Handlingen_US
dc.subjectHighway Engineeringen_US
dc.subjectRoad Vehiclesen_US
dc.subjectRoads And Streetsen_US
dc.subjectTraffic Controlen_US
dc.subjectAutomated Vehiclesen_US
dc.subjectData Analyticsen_US
dc.subjectData And Data Scienceen_US
dc.subjectHighway Automationen_US
dc.subjectLight Detection And Rangingen_US
dc.subjectMachine-learningen_US
dc.subjectOperationen_US
dc.subjectRoad Boundary Detectionen_US
dc.subjectRoad Conditionen_US
dc.subjectVehicle-highway Automationen_US
dc.subjectOptical Radaren_US
dc.titleDynamic Road Boundary Detection Using Sparse 3D-LiDAR in Complex Road and Environmental Conditionsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Civil Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: