Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/16732
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Inamdar, Tanmay | en_US |
dc.contributor.author | Kanesh, Lawqueen | en_US |
dc.contributor.author | Krithika, R. | en_US |
dc.contributor.author | Mittal, Harshil | en_US |
dc.contributor.author | Saurabh, Saket | en_US |
dc.date.accessioned | 2025-09-04T12:47:44Z | - |
dc.date.available | 2025-09-04T12:47:44Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Inamdar, T., Kanesh, L., Krithika, R., Mittal, H., & Saurabh, S. (2025). Bicriteria FPT-Approximation Algorithms for Vertex Deletion to Bounded Degeneracy Graphs. Lecture Notes in Computer Science, 15885 LNCS, 391–404. https://doi.org/10.1007/978-3-031-98740-3_28 | en_US |
dc.identifier.isbn | 9789819698936 | - |
dc.identifier.isbn | 9789819698042 | - |
dc.identifier.isbn | 9789819698110 | - |
dc.identifier.isbn | 9789819698905 | - |
dc.identifier.isbn | 9789819698141 | - |
dc.identifier.isbn | 9783031984136 | - |
dc.identifier.isbn | 9789819500086 | - |
dc.identifier.isbn | 9789819665938 | - |
dc.identifier.isbn | 9789819681969 | - |
dc.identifier.isbn | 9783031945618 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.other | EID(2-s2.0-105011939776) | - |
dc.identifier.uri | https://dx.doi.org/10.1007/978-3-031-98740-3_28 | - |
dc.identifier.uri | https://dspace.iiti.ac.in:8080/jspui/handle/123456789/16732 | - |
dc.description.abstract | In this work, we consider the optimization problem of finding a minimum-weight subset of vertices of a given undirected graph on n vertices whose deletion results in a d-degenerate graph. For d≥2, this problem is known to be constant-factor inapproximable implying that one cannot hope for anything better than bicriteria approximation algorithms. Towards this end, we give a randomized polynomial-time algorithm that for any value of the bicriteria approximation trade-off parameter α>1 and confidence parameter δ∈(0,1), returns a 2αd-degeneracy modulator whose weight is at most (1+δ)·2αα-1 times the weight of an optimum solution with high probability. Then, we move on to the decision problem of determining if a graph G on n vertices has a d-degeneracy modulator of size at most k. For each d≥2, this problem is known to be W[P]-hard with respect to k and we give three FPT-approximation algorithms for solving it. These algorithms return a 2αd-degeneracy modulator whose size is at most k (if a k-sized d-degeneracy modulator exists) for any α>1. All our algorithms can be tuned to return a 2d-degeneracy modulator of size at most k (if a k-sized d-degeneracy modulator exists) by setting α appropriately. © 2025 Elsevier B.V., All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.source | Lecture Notes in Computer Science | en_US |
dc.subject | Approximation Algorithms | en_US |
dc.subject | Decision Theory | en_US |
dc.subject | Graph Algorithms | en_US |
dc.subject | Modulators | en_US |
dc.subject | Optimization | en_US |
dc.subject | Polynomial Approximation | en_US |
dc.subject | Undirected Graphs | en_US |
dc.subject | Bi-criteria | en_US |
dc.subject | Bicriteria Approximation | en_US |
dc.subject | Constant Factors | en_US |
dc.subject | Degenerate Graphs | en_US |
dc.subject | Fpt Approximation | en_US |
dc.subject | Minimum Weight | en_US |
dc.subject | Optimization Problems | en_US |
dc.subject | Polynomial-time Algorithms | en_US |
dc.subject | Trade Off | en_US |
dc.subject | Undirected Graph | en_US |
dc.subject | Economic And Social Effects | en_US |
dc.title | Bicriteria FPT-Approximation Algorithms for Vertex Deletion to Bounded Degeneracy Graphs | en_US |
dc.type | Conference Paper | en_US |
Appears in Collections: | Department of Computer Science and Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: