Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorInamdar, Tanmayen_US
dc.contributor.authorKanesh, Lawqueenen_US
dc.contributor.authorKrithika, R.en_US
dc.contributor.authorMittal, Harshilen_US
dc.contributor.authorSaurabh, Saketen_US
dc.date.accessioned2025-09-04T12:47:44Z-
dc.date.available2025-09-04T12:47:44Z-
dc.date.issued2025-
dc.identifier.citationInamdar, T., Kanesh, L., Krithika, R., Mittal, H., & Saurabh, S. (2025). Bicriteria FPT-Approximation Algorithms for Vertex Deletion to Bounded Degeneracy Graphs. Lecture Notes in Computer Science, 15885 LNCS, 391–404. https://doi.org/10.1007/978-3-031-98740-3_28en_US
dc.identifier.isbn9789819698936-
dc.identifier.isbn9789819698042-
dc.identifier.isbn9789819698110-
dc.identifier.isbn9789819698905-
dc.identifier.isbn9789819698141-
dc.identifier.isbn9783031984136-
dc.identifier.isbn9789819500086-
dc.identifier.isbn9789819665938-
dc.identifier.isbn9789819681969-
dc.identifier.isbn9783031945618-
dc.identifier.issn1611-3349-
dc.identifier.issn0302-9743-
dc.identifier.otherEID(2-s2.0-105011939776)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-031-98740-3_28-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16732-
dc.description.abstractIn this work, we consider the optimization problem of finding a minimum-weight subset of vertices of a given undirected graph on n vertices whose deletion results in a d-degenerate graph. For d≥2, this problem is known to be constant-factor inapproximable implying that one cannot hope for anything better than bicriteria approximation algorithms. Towards this end, we give a randomized polynomial-time algorithm that for any value of the bicriteria approximation trade-off parameter α>1 and confidence parameter δ∈(0,1), returns a 2αd-degeneracy modulator whose weight is at most (1+δ)·2αα-1 times the weight of an optimum solution with high probability. Then, we move on to the decision problem of determining if a graph G on n vertices has a d-degeneracy modulator of size at most k. For each d≥2, this problem is known to be W[P]-hard with respect to k and we give three FPT-approximation algorithms for solving it. These algorithms return a 2αd-degeneracy modulator whose size is at most k (if a k-sized d-degeneracy modulator exists) for any α>1. All our algorithms can be tuned to return a 2d-degeneracy modulator of size at most k (if a k-sized d-degeneracy modulator exists) by setting α appropriately. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Computer Scienceen_US
dc.subjectApproximation Algorithmsen_US
dc.subjectDecision Theoryen_US
dc.subjectGraph Algorithmsen_US
dc.subjectModulatorsen_US
dc.subjectOptimizationen_US
dc.subjectPolynomial Approximationen_US
dc.subjectUndirected Graphsen_US
dc.subjectBi-criteriaen_US
dc.subjectBicriteria Approximationen_US
dc.subjectConstant Factorsen_US
dc.subjectDegenerate Graphsen_US
dc.subjectFpt Approximationen_US
dc.subjectMinimum Weighten_US
dc.subjectOptimization Problemsen_US
dc.subjectPolynomial-time Algorithmsen_US
dc.subjectTrade Offen_US
dc.subjectUndirected Graphen_US
dc.subjectEconomic And Social Effectsen_US
dc.titleBicriteria FPT-Approximation Algorithms for Vertex Deletion to Bounded Degeneracy Graphsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: