Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Relianceen_US
dc.contributor.authorJain, Sandeepen_US
dc.contributor.authorDewangan, Sheetal Kumaren_US
dc.contributor.authorSamal, Sumantaen_US
dc.contributor.authorLee, Hansungen_US
dc.contributor.authorSong, Eunhyoen_US
dc.contributor.authorLee, Younggeonen_US
dc.contributor.authorAhn, Byungminen_US
dc.date.accessioned2025-09-04T12:47:45Z-
dc.date.available2025-09-04T12:47:45Z-
dc.date.issued2025-
dc.identifier.citationJain, R., Jain, S., Dewangan, S. K., Samal, S., Lee, H., Song, E., Lee, Y., & Ahn, B. (2025). Prediction of alloying element effects on the mechanical behavior of high-pressure die-cast Mg-based alloys. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2025.06.023en_US
dc.identifier.issn2213-9567-
dc.identifier.otherEID(2-s2.0-105012392672)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.jma.2025.06.023-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16734-
dc.description.abstractAchieving optimal mechanical performance in high-pressure die-cast (HPDC) Mg-based alloys through experimental methods is both costly and time-intensive due to significant variations in composition. This study leverages machine learning (ML) techniques to accelerate the development of high-performance Mg-based alloys. Data on alloy composition and mechanical properties were collected from literature sources, focusing on HPDC Mg-based alloys. Six ML models—extra trees, CatBoost, k-nearest neighbors, random forest, gradient boosting, and decision tree—were trained to predict mechanical behavior. CatBoost yielded the highest prediction accuracy with R2 scores of 0.95 for ultimate tensile strength (UTS) and 0.92 for yield strength (YS). Further validation using published datasets reaffirmed its reliability, demonstrating R2 values of 0.956 (UTS) and 0.936 (YS), MAE of 1% and 2.8%, and RMSE of 1% and 3.5%, respectively. Among these, the CatBoost model demonstrated the highest predictive accuracy, outperforming other ML techniques across multiple optimization metrics. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherKeAi Communications Co.en_US
dc.sourceJournal of Magnesium and Alloysen_US
dc.subjectAlloys Developmenten_US
dc.subjectHigh-pressure Die Castingen_US
dc.subjectLightweight Alloysen_US
dc.subjectMachine Learningen_US
dc.subjectPredictive Analysisen_US
dc.subjectAdaptive Boostingen_US
dc.subjectAlloyingen_US
dc.subjectDecision Treesen_US
dc.subjectDie Castingen_US
dc.subjectForecastingen_US
dc.subjectHigh Pressure Effectsen_US
dc.subjectLearning Systemsen_US
dc.subjectMachine Learningen_US
dc.subjectMagnesium Alloysen_US
dc.subjectNearest Neighbor Searchen_US
dc.subjectRandom Forestsen_US
dc.subjectAlloy Developmenten_US
dc.subjectHigh Pressure Die Castingen_US
dc.subjectHigh Pressure Die Castsen_US
dc.subjectLight Weight Alloysen_US
dc.subjectMachine Learning Techniquesen_US
dc.subjectMachine-learningen_US
dc.subjectMechanical Behavioren_US
dc.subjectMechanical Performanceen_US
dc.subjectMg-based Alloyen_US
dc.subjectUltimate Tensile Strengthen_US
dc.subjectTensile Strengthen_US
dc.titlePrediction of alloying element effects on the mechanical behavior of high-pressure die-cast Mg-based alloysen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: