Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJha, Preetien_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorBharill, Nehaen_US
dc.contributor.authorRatnaparkhe, Milind Balkrishnaen_US
dc.contributor.authorPatel, Om Prakashen_US
dc.date.accessioned2025-09-04T12:47:45Z-
dc.date.available2025-09-04T12:47:45Z-
dc.date.issued2025-
dc.identifier.citationJha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., & Patel, O. P. (2025). Gpu-enhanced scalable methods for genome sequence feature extraction and clustering. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-025-02894-2en_US
dc.identifier.issn0975-6809-
dc.identifier.issn0976-4348-
dc.identifier.otherEID(2-s2.0-105011739985)-
dc.identifier.urihttps://dx.doi.org/10.1007/s13198-025-02894-2-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16737-
dc.description.abstractWith the evolution of bioinformatics, vast amounts of genomic data are generated every day. Clustering has been widely used to derive meaningful insights from huge genomic datasets. To deal with such huge amounts of genomic data, scalable clustering algorithms were designed earlier. The main limitation of scalable clustering algorithms is that these methods cannot take the raw form of huge single nucleotide polymorphism (SNP) sequences as input. In this paper, we propose the Scalable GPU accelerated SNP feature extraction (SGPU-SNPfe) algorithm, which preprocesses the raw SNP sequences and produces twelve-dimensional numerical feature vectors. The SGPU-SNPfe enables Spark to utilize GPUs in high-performance computing (HPC). The preprocessed SNP sequences obtained from the SGPU-SNPfe algorithm are used as input to scalable fuzzy clustering algorithms. The experimental results demonstrate the effectiveness of the SGPU-SNPfe algorithm on scalable fuzzy clustering algorithms in terms of the Silhouette Index and Davies-Bouldin Index. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceInternational Journal of System Assurance Engineering and Managementen_US
dc.subjectApache Sparken_US
dc.subjectFeature Extractionen_US
dc.subjectFuzzy Clusteringen_US
dc.subjectGpuen_US
dc.subjectScalable Algorithmen_US
dc.subjectSnpen_US
dc.subjectBioinformaticsen_US
dc.subjectClustering Algorithmsen_US
dc.subjectExtractionen_US
dc.subjectGenesen_US
dc.subjectGenomeen_US
dc.subjectProgram Processorsen_US
dc.subjectScalabilityen_US
dc.subjectApache Sparken_US
dc.subjectClusteringsen_US
dc.subjectFeature Extraction Algorithmsen_US
dc.subjectFeatures Extractionen_US
dc.subjectFuzzy Clustering Algorithmen_US
dc.subjectGenomic Dataen_US
dc.subjectGpu-accelerateden_US
dc.subjectScalable Algorithmsen_US
dc.subjectScalable Clusteringen_US
dc.subjectSingle Nucleotide Polymorphismsen_US
dc.subjectFeature Extractionen_US
dc.subjectFuzzy Clusteringen_US
dc.subjectGraphics Processing Uniten_US
dc.titleGpu-enhanced scalable methods for genome sequence feature extraction and clusteringen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: