Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16840
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Vinod Udayen_US
dc.date.accessioned2025-09-16T12:34:51Z-
dc.date.available2025-09-16T12:34:51Z-
dc.date.issued2026-
dc.identifier.citationLee, H., Dewangan, S. K., Nagarjuna, C., Youn, G., Kumar, V. U., & Ahn, B. (2026). Microstructure and wear performance of spark plasma-sintered AlCrFeMnNiW0.5 high-entropy alloy. International Journal of Refractory Metals and Hard Materials, 134. https://doi.org/10.1016/j.ijrmhm.2025.107413en_US
dc.identifier.issn0263-4368-
dc.identifier.issn2213-3917-
dc.identifier.otherEID(2-s2.0-105014918618)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.ijrmhm.2025.107413-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16840-
dc.description.abstractIn this study, we prepared the AlCrFeMnNiW<inf>0.5</inf> high-entropy alloy (HEA) by mechanical alloying (MA) and subsequent spark plasma sintering (SPS). The investigation focused on the alloy's phase composition and microstructural characteristics. The milled powders revealed a single-phase BCC solid solution. After SPS, the sample exhibited a sigma phase (σ), ordered B2, BCC, and minor FCC phases with high hardness of 839 ± 10 HV. To assess the wear behavior of HEA, dry sliding tests were performed at room temperature by varying the normal load from 2 to 15 N at a constant sliding velocity (6 cm/s) and sliding time (10 min). The results found that the coefficient of friction (COF) decreased from 0.16 to 0.12, while the specific wear rate reduced from 2.49 to 1.65 × 10−5 mm3/Nm with increasing normal load. These findings indicate exceptional wear resistance in this HEA compared to other HEAs, attributed to its superior hardness. Consequently, the tungsten-containing high-entropy alloy demonstrates significant importance for outstanding hardness and wear resistance, as discussed comprehensively in this work. Moreover, tungsten-containing HEAs broaden their potential applications across diverse industries such as cutting tools and the aerospace industry, offering enhanced performance, extended service life, and improved efficiency in various critical components and tools. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceInternational Journal of Refractory Metals and Hard Materialsen_US
dc.subjectHigh Entropy Alloyen_US
dc.subjectMicrostructureen_US
dc.subjectPowder Metallurgyen_US
dc.subjectThermodynamic Simulationen_US
dc.subjectWear Behavioren_US
dc.subjectAerospace Industryen_US
dc.subjectAluminum Alloysen_US
dc.subjectChromium Alloysen_US
dc.subjectCutting Toolsen_US
dc.subjectEntropyen_US
dc.subjectFrictionen_US
dc.subjectHardnessen_US
dc.subjectHigh-entropy Alloysen_US
dc.subjectIron Alloysen_US
dc.subjectManganese Alloysen_US
dc.subjectMechanical Alloyingen_US
dc.subjectService Industryen_US
dc.subjectSpark Plasma Sinteringen_US
dc.subjectTernary Alloysen_US
dc.subjectTungsten Alloysen_US
dc.subjectWear Of Materialsen_US
dc.subjectWear Resistanceen_US
dc.subjectAlloy Phasisen_US
dc.subjectHigh Entropy Alloysen_US
dc.subjectMechanicalen_US
dc.subjectMicrostructure Performanceen_US
dc.subjectNormal Loadsen_US
dc.subjectSpark Plasmaen_US
dc.subjectSpark-plasma-sinteringen_US
dc.subjectThermodynamic Simulationsen_US
dc.subjectWear Behaviorsen_US
dc.subjectWear Performanceen_US
dc.subjectPowder Metallurgyen_US
dc.titleMicrostructure and wear performance of spark plasma-sintered AlCrFeMnNiW0.5 high-entropy alloyen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: