Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaxena, Samriddhien_US
dc.contributor.authorDagar, Nehaen_US
dc.contributor.authorDas, Asish Kumaren_US
dc.contributor.authorGami, Pratikshaen_US
dc.contributor.authorKumar, Sunilen_US
dc.date.accessioned2025-09-16T12:34:51Z-
dc.date.available2025-09-16T12:34:51Z-
dc.date.issued2025-
dc.identifier.citationSaxena, S., Dagar, N., Srihari, V., Chinnathambi, K., Das, A. K., Gami, P., Deswal, S., Kumar, P. S. A., Poswal, H. K., & Kumar, S. (2025). Compositional tuning of Fe/Mn and Fe/Ni ratios in P3-type cathodes enables high energy density sodium-ion batteries. Materials Today Energy, 53. https://doi.org/10.1016/j.mtener.2025.102048en_US
dc.identifier.issn2468-6069-
dc.identifier.otherEID(2-s2.0-105015297793)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.mtener.2025.102048-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16844-
dc.description.abstractLayered oxide cathodes are promising candidates for sodium-ion batteries due to their high theoretical capacity and structural tunability. However, irreversible high-voltage redox reactions and structural degradation hinder their practical deployment. In this study, a series of Na<inf>0.8</inf>(Mn–Fe–Ni)O<inf>2</inf> cathodes with systematically varied Fe/Mn and Fe/Ni ratios is investigated to uncover the role of transition metal composition in governing redox behavior, phase transitions, and long-term performance across 2.0–4.0 V and 2.0–4.4 V. Structural analyses reveal that increasing Fe/Mn ratio expands Na-O<inf>2</inf> layer spacing and strengthens TM–O bonds, indicating reduced anionic activity and improved structural stability. Na<inf>0.8</inf>Mn<inf>0.53</inf>Fe<inf>0.25</inf>Ni<inf>0.22</inf>O<inf>2</inf> delivers the highest specific capacity (153 mAh g−1), specific energy (500.3 Wh kg−1), and reversible high-voltage redox activity, retaining 92.6 % of its capacity after 100 cycles at 0.2C (2.0–4.4 V). Operando Synchrotron X-ray diffraction confirms P3/O3↔P3″/O3 transformations with minimal lattice strain (Δc=[Formula presented]×100% = −1.81 % for O3, +1.00 % for P3), contributing to enhanced high-voltage cyclability in Na<inf>0.8</inf>Mn<inf>0.53</inf>Fe<inf>0.25</inf>Ni<inf>0.22</inf>O<inf>2</inf>. Meanwhile, Na<inf>0.8</inf>Mn<inf>0.64</inf>Fe<inf>0.14</inf>Ni<inf>0.22</inf>O<inf>2</inf> exhibits exceptional cycling performance (99 % retention) in the 2.0–4.0 V range, benefiting from a P3↔P3′ transition. These findings highlight the critical role of Fe/Mn and Fe/Ni tuning in balancing redox reversibility and structural integrity, offering a rational design strategy for high-energy, long-life sodium-ion cathodes. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceMaterials Today Energyen_US
dc.subjectBiphasic P3/o3en_US
dc.subjectEnergy Densityen_US
dc.subjectLayered Oxidesen_US
dc.subjectOperando Synchrotron Xrden_US
dc.subjectSodium-ion Batteriesen_US
dc.subjectCathodesen_US
dc.subjectIron Compoundsen_US
dc.subjectManganese Compoundsen_US
dc.subjectMetal Ionsen_US
dc.subjectNickel Compoundsen_US
dc.subjectRedox Reactionsen_US
dc.subjectSodium Compoundsen_US
dc.subjectStabilityen_US
dc.subjectStructural Optimizationen_US
dc.subjectSynchrotron Radiationen_US
dc.subjectSynchrotronsen_US
dc.subjectThulium Compoundsen_US
dc.subjectTuningen_US
dc.subjectBiphasic P3/o3en_US
dc.subjectCompositional Tuningen_US
dc.subjectEnergy Densityen_US
dc.subjectHigh-voltagesen_US
dc.subjectHigher Energy Densityen_US
dc.subjectLayered Oxidesen_US
dc.subjectOperandoen_US
dc.subjectOperando Synchrotron Xrden_US
dc.subjectSodium Ion Batteriesen_US
dc.subjectSynchrotron Xrden_US
dc.subjectSodium-ion Batteriesen_US
dc.titleCompositional tuning of Fe/Mn and Fe/Ni ratios in P3-type cathodes enables high energy density sodium-ion batteriesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: