Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDagar, Nehaen_US
dc.contributor.authorSaxena, Samriddhien_US
dc.contributor.authorKumar, Sunilen_US
dc.date.accessioned2025-09-23T12:04:34Z-
dc.date.available2025-09-23T12:04:34Z-
dc.date.issued2025-
dc.identifier.citationDagar, N., Saxena, S., Srihari, V., Poswal, H. K., Deswal, S., Kumar, P. S. A., & Kumar, S. (2025). Biphasic P3/O3 driven excellent electrochemical behavior and structural stability in a dual pillar-ions sodium layered oxide cathode. Journal of Power Sources, 658. https://doi.org/10.1016/j.jpowsour.2025.238380en_US
dc.identifier.isbn0444894810-
dc.identifier.issn0378-7753-
dc.identifier.otherEID(2-s2.0-105015408591)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.jpowsour.2025.238380-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16871-
dc.description.abstractLayered oxides suffer from detrimental phase transformations during the charge-discharge process, limiting their long-term cyclability and causing poor rate performance as Na-ion battery cathodes. Herein, Ti/Al co-doped Na<inf>2/3</inf>Mn<inf>2/3</inf>Ni<inf>1/3</inf>O<inf>2</inf> cathode with an optimized P3/O3 biphasic structure is designed that effectively constrains these undesirable phase transformations and cooperative Jahn–Teller distortion. Ti/Al doping imparts excellent electrochemical properties with Na<inf>0.77</inf>Mn<inf>0.47</inf>Al<inf>0.10</inf>Ti<inf>0.10</inf>Ni<inf>0.33</inf>O<inf>2</inf> (NMAT-10) shows an excellent specific capacity of ∼175.5 mAh g−1 at 0.1C in 1.5–4.2 V range and capacity retention of 83 % after 300 cycles at 2C in 2.0–4.2 V. It also exhibits a much-improved rate capability with about 80 % capacity at 5C relative to the capacity observed at 0.1C. These improvements in electrochemical performance are attributed to the stronger Al-O bond, which suppresses the severity of P3↔P3′↔O3 phase transformation, as confirmed by the operando synchrotron x-ray diffraction studies. The practical viability of NMAT-10 cathode is verified in a full cell using a commercial hard-carbon anode, which showed a discharge capacity of ∼80 mAh g−1 at 0.2C and a remarkable capacity retention of 86 % after 100 cycles. This work highlights the P3/O3 biphasic structure as an effective approach to achieve an excellent rate performance and better cycling stability in layered oxides for sodium-ion batteries. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceJournal of Power Sourcesen_US
dc.subjectElectrochemical Behavioren_US
dc.subjectNa-ion Batteriesen_US
dc.subjectOperando Synchrotron Xrden_US
dc.subjectP3/o3 Biphasic Cathodeen_US
dc.subjectAluminum Compoundsen_US
dc.subjectAnodesen_US
dc.subjectElectric Dischargesen_US
dc.subjectMetal Ionsen_US
dc.subjectPhase Transitionsen_US
dc.subjectSodium Compoundsen_US
dc.subjectStabilityen_US
dc.subjectSynchrotron Radiationen_US
dc.subjectTitanium Compoundsen_US
dc.subjectX Ray Diffractionen_US
dc.subjectBiphasic Structureen_US
dc.subjectElectrochemical Behaviorsen_US
dc.subjectLayered Oxidesen_US
dc.subjectNa-ion Batteriesen_US
dc.subjectOperandoen_US
dc.subjectOperando Synchrotron Xrden_US
dc.subjectP3/o3 Biphasic Cathodeen_US
dc.subjectPhases Transformationen_US
dc.subjectRate Performanceen_US
dc.subjectSynchrotron Xrden_US
dc.subjectCathodesen_US
dc.subjectSodium-ion Batteriesen_US
dc.titleBiphasic P3/O3 driven excellent electrochemical behavior and structural stability in a dual pillar-ions sodium layered oxide cathodeen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: