Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGami, Pratikshaen_US
dc.contributor.authorKumar, Sunilen_US
dc.date.accessioned2025-09-23T12:04:34Z-
dc.date.available2025-09-23T12:04:34Z-
dc.date.issued2025-
dc.identifier.citationGami, P., & Kumar, S. (2025). Tuning the Ionic Conductivity and Structural Stability of LiHf2(PO4)3Solid Electrolytes through Al Substitution. Journal of Physical Chemistry C, 129(36), 15970–15977. https://doi.org/10.1021/acs.jpcc.5c03469en_US
dc.identifier.issn1932-7455-
dc.identifier.issn1932-7447-
dc.identifier.otherEID(2-s2.0-105015568503)-
dc.identifier.urihttps://dx.doi.org/10.1021/acs.jpcc.5c03469-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16873-
dc.description.abstractRechargeable Li-metal batteries with solid electrolytes offer enhanced safety and higher specific capacity than conventional liquid-electrolyte-based Li-ion batteries. However, low Li-ion conductivity and high interfacial resistance between the electrolyte and electrode often hinder their performance. In this study, Al-substituted LiHf<inf>2</inf>(PO<inf>4</inf>)<inf>3</inf>inorganic electrolytes are fabricated via the conventional solid-state reaction method. The Rietveld refinement of room-temperature X-ray diffraction data confirms a rhombohedral phase. The highest total ionic conductivity was observed for 25% Al substitution at the Hf site (7.09 × 10–5S cm–1). The activation energy for total ionic conductivity decreased from 0.50 to 0.29 eV with increasing aluminum substitution until x = 0.5. The Li-ion transference number was ∼0.99, indicating that lithium ion dominates the charge transport in the material. Electrochemical stability tests using linear sweep voltammetry revealed the ceramic electrolyte’s stability up to approximately 4.61 V. The Li<inf>1.5</inf>Al<inf>0.5</inf>Hf<inf>1.5</inf>(PO<inf>4</inf>)<inf>3</inf>electrolyte demonstrated stable lithium plating/stripping in a Lien_US
dc.description.abstractLi cell for over 170 h. Furthermore, when employed in a solid-state Lien_US
dc.description.abstractLiFePO<inf>4</inf>cell, it exhibited high Coulombic efficiency and decent cycling stability, demonstrating its potential for use in high-temperature solid-state batteries. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceJournal of Physical Chemistry Cen_US
dc.subjectActivation Energyen_US
dc.subjectAluminumen_US
dc.subjectAluminum Compoundsen_US
dc.subjectFluorine Compoundsen_US
dc.subjectHafnium Compoundsen_US
dc.subjectHigh Temperature Applicationsen_US
dc.subjectIonic Conduction In Solidsen_US
dc.subjectIonic Conductivityen_US
dc.subjectIonsen_US
dc.subjectLithiumen_US
dc.subjectLithium Compoundsen_US
dc.subjectLithium-ion Batteriesen_US
dc.subjectPhosphorus Compoundsen_US
dc.subjectSolid Electrolytesen_US
dc.subjectSolid State Devicesen_US
dc.subjectSolid State Reactionsen_US
dc.subjectSolid-state Batteriesen_US
dc.subjectStabilityen_US
dc.subjectAl-substitutionen_US
dc.subjectHigh Specific Capacityen_US
dc.subjectInorganic Electrolyteen_US
dc.subjectInterfacial Resistancesen_US
dc.subjectIon Batteriesen_US
dc.subjectLi Ion Conductivitiesen_US
dc.subjectLi Metalen_US
dc.subjectLiquid Electrolytesen_US
dc.subjectPerformanceen_US
dc.subjectStructural Stabilitiesen_US
dc.subjectRietveld Refinementen_US
dc.titleTuning the Ionic Conductivity and Structural Stability of LiHf2(PO4)3Solid Electrolytes through Al Substitutionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: