Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16954
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKokane, Omkaren_US
dc.contributor.authorLokhande, Mukulen_US
dc.contributor.authorVishvakarma, Santosh Kumaren_US
dc.date.accessioned2025-10-23T12:41:57Z-
dc.date.available2025-10-23T12:41:57Z-
dc.date.issued2025-
dc.identifier.citationKokane, O., Raut, G., Ullah, S., Lokhande, M., Teman, A., Kumar, A., & Vishvakarma, S. K. (2025). Retrospective: A CORDIC Based Configurable Activation Function for NN Applications. Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI. https://doi.org/10.1109/ISVLSI65124.2025.11130218en_US
dc.identifier.isbn9781728157757-
dc.identifier.isbn9781479987184-
dc.identifier.isbn9781665439466-
dc.identifier.isbn9781467390385-
dc.identifier.isbn0769514863-
dc.identifier.isbn9781538670996-
dc.identifier.isbn9781479913312-
dc.identifier.isbn9798350327694-
dc.identifier.isbn9798350354119-
dc.identifier.isbn9781479937639-
dc.identifier.issn21593477-
dc.identifier.issn21593469-
dc.identifier.otherEID(2-s2.0-105016118400)-
dc.identifier.urihttps://dx.doi.org/10.1109/ISVLSI65124.2025.11130218-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16954-
dc.description.abstractA CORDIC-based configuration for the design of Activation Functions (AF) was previously suggested to accelerate ASIC hardware design for resource-constrained systems by providing functional reconfigurability. Since its introduction, this new approach for neural network acceleration has gained widespread popularity, influencing numerous designs for activation functions in both academic and commercial AI processors. In this retrospective analysis, we explore the foundational aspects of this initiative, summarize key developments over recent years, and introduce the DA-VINCI AF tailored for the evolving needs of AI applications. This new generation of dynamically configurable and precision-adjustable activation function cores promise greater adaptability for a range of activation functions in AI workloads, including Swish, SoftMax, SeLU, and GeLU, utilizing the Shift-and-Add CORDIC technique. The previously presented design has been optimized for MAC, Sigmoid, and Tanh functionalities and incorporated into ReLU AFs, culminating in an accumulative NEURIC compute unit. These enhancements position NEURIC as a fundamental component in the resourceefficient vector engine for the realization of AI accelerators that focus on DNNs, RNNs/LSTMs, and Transformers, achieving a quality of results (QoR) of 98.5%. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceProceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSIen_US
dc.subjectActivation Functionen_US
dc.subjectAi Acceleratorsen_US
dc.subjectCordicen_US
dc.subjectReconfigurable Computingen_US
dc.subjectTransformersen_US
dc.subjectIntegrated Circuit Designen_US
dc.subjectNeural Networksen_US
dc.subjectReconfigurable Architecturesen_US
dc.subjectReconfigurable Hardwareen_US
dc.subjectActivation Functionsen_US
dc.subjectAi Acceleratoren_US
dc.subjectConstrained Systemsen_US
dc.subjectCordicen_US
dc.subjectFunctionalsen_US
dc.subjectHardware Designen_US
dc.subjectReconfigurabilityen_US
dc.subjectReconfigurable Computingen_US
dc.subjectReconfigurable- Computingen_US
dc.subjectTransformeren_US
dc.subjectChemical Activationen_US
dc.titleRetrospective: A CORDIC Based Configurable Activation Function for NN Applicationsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: