Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16968
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Surajen_US
dc.contributor.authorChattopadhyay, Soumien_US
dc.date.accessioned2025-10-23T12:41:58Z-
dc.date.available2025-10-23T12:41:58Z-
dc.date.issued2026-
dc.identifier.citationPriya, K., Kumar, S., Dey, A., Adak, C., Chattopadhyay, S., Chanda, S., & Marinai, S. (2026). Graph Convolutional Teacher-Student Framework for Writer Inspection from Intra-variable Handwritten Words. In Lecture Notes in Computer Science: Vol. 16025 LNCS. https://doi.org/10.1007/978-3-032-04624-6_7en_US
dc.identifier.isbn9789819698936-
dc.identifier.isbn9789819698042-
dc.identifier.isbn9789819698110-
dc.identifier.isbn9789819698905-
dc.identifier.isbn9789819512324-
dc.identifier.isbn9783032026019-
dc.identifier.isbn9783032008909-
dc.identifier.isbn9783031915802-
dc.identifier.isbn9789819698141-
dc.identifier.isbn9783031984136-
dc.identifier.issn16113349-
dc.identifier.issn03029743-
dc.identifier.otherEID(2-s2.0-105017375217)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-032-04624-6_7-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16968-
dc.description.abstractHandwriting exhibits distinctive individual characteristics, making it a crucial biometric modality for forensic document examination and legal authentication. In this paper, we propose a graph convolutional teacher-student framework for writer inspection using single handwritten word samples. Our approach integrates both writer identification and verification networks to enhance reliability and robustness. We first train a teacher model for writer identification and then distill its knowledge into a student model for writer verification. Both models leverage Graph Convolutional Networks (GCNs) to learn discriminative writer-specific representations from handwriting graph structures. To evaluate our approach, we introduce a new dataset comprising intra-variable handwritten word samples collected intermittently over several months. This dataset contains 79 distinct English words, each written 6 times by 100 different writers, resulting in a total of 47400 handwritten word images. Additionally, we tested our model on some benchmark datasets to ensure its robustness and generalizability. Experimental results demonstrate that our method achieved promising performances in both identification and verification tasks, outperforming state-of-the-art approaches. These findings highlight the effectiveness of graph-based handwriting analysis in capturing intra-writer variations and the benefits of knowledge distillation for efficient writer inspection. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Computer Scienceen_US
dc.subjectBiometricsen_US
dc.subjectGraph Convolutional Networken_US
dc.subjectHandwriting Intra-variabilityen_US
dc.subjectTeacher-student Frameworken_US
dc.subjectWriter Identificationen_US
dc.subjectWriter Verificationen_US
dc.subjectCharacter Recognitionen_US
dc.subjectConvolutionen_US
dc.subjectGraph Structuresen_US
dc.subjectGraph Theoryen_US
dc.subjectGraphic Methodsen_US
dc.subjectInspectionen_US
dc.subjectPersonnel Trainingen_US
dc.subjectConvolutional Networksen_US
dc.subjectGraph Convolutional Networken_US
dc.subjectHandwriting Intra-variabilityen_US
dc.subjectHandwritten Wordsen_US
dc.subjectIndividual Characteristicsen_US
dc.subjectStudent Frameworken_US
dc.subjectTeacher-student Frameworken_US
dc.subjectTeachers'en_US
dc.subjectWriter Identificationen_US
dc.subjectWriter Verificationen_US
dc.subjectBiometricsen_US
dc.titleGraph Convolutional Teacher-Student Framework for Writer Inspection from Intra-variable Handwritten Wordsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: