Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajat, Kattaen_US
dc.contributor.authorShekhar, Kumar Sheshanken_US
dc.contributor.authorTanti, Harsha Avinashen_US
dc.contributor.authorDatta, Abhirupen_US
dc.date.accessioned2025-10-23T12:41:59Z-
dc.date.available2025-10-23T12:41:59Z-
dc.date.issued2025-
dc.identifier.citationShekhar, K. S., Tanti, H. A., & Datta, A. (2025). UAV Based Farm Inspection using Deep Learning. https://doi.org/10.1109/MPSecICETA64837.2025.11118656en_US
dc.identifier.isbn979-8331521318-
dc.identifier.otherEID(2-s2.0-105016324566)-
dc.identifier.urihttps://dx.doi.org/10.1109/MPSecICETA64837.2025.11118656-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16974-
dc.description.abstractRecent advancements in AI and UAV (Unmanned Aerial Vehicle) technology have enabled real-time precision farming applications, transforming traditional agricultural practices. This paper presents a novel farm inspection system combining UAVs, deep learning, and AI edge devices to analyze crops and livestock in real time. Utilizing the lightweight YOLOv8n object detection model on the NVIDIA Jetson Orin Nano, the system achieves rapid detection of crop diseases, plant health issues, and livestock conditions within 90 ms and an overall accuracy of ∼ 93%. The UAV provides aerial data for large-scale monitoring, while the edge device processes data locally, reducing latency and enabling autonomous operation in remote areas without cloud connectivity. This integration enhances inspection speed, coverage, and accuracy, enabling timely interventions and resource optimization. By leveraging deep learning, edge computing, and UAV technology, the proposed system demonstrates significant potential to improve agricultural efficiency and sustainability. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.subjectAi Edge Deviceen_US
dc.subjectComputer Visionen_US
dc.subjectNear Real-time Object Detectionen_US
dc.subjectYolov8en_US
dc.subjectAircraft Detectionen_US
dc.subjectAntennasen_US
dc.subjectCropsen_US
dc.subjectDeep Learningen_US
dc.subjectFighter Aircraften_US
dc.subjectInspectionen_US
dc.subjectLearning Systemsen_US
dc.subjectObject Detectionen_US
dc.subjectUnmanned Aerial Vehicles (uav)en_US
dc.subjectAerial Vehicleen_US
dc.subjectAgricultural Practicesen_US
dc.subjectAi Edge Deviceen_US
dc.subjectNear Real-time Object Detectionen_US
dc.subjectNear-real Timeen_US
dc.subjectObjects Detectionen_US
dc.subjectPrecision-farmingen_US
dc.subjectReal- Timeen_US
dc.subjectVehicle Technologyen_US
dc.subjectYolov8en_US
dc.subjectComputer Visionen_US
dc.titleUAV Based Farm Inspection using Deep Learningen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Astronomy, Astrophysics and Space Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: