Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWakale, Girish R.en_US
dc.contributor.authorChoudhary, Ektaen_US
dc.contributor.authorSamtham, Manopriyaen_US
dc.contributor.authorPatil, Ajayen_US
dc.contributor.authorYadav, Ankiten_US
dc.contributor.authorYadav, Sumanen_US
dc.contributor.authorSharma, Rishaven_US
dc.contributor.authorJadhav, Harshadaen_US
dc.date.accessioned2025-10-23T12:41:59Z-
dc.date.available2025-10-23T12:41:59Z-
dc.date.issued2025-
dc.identifier.citationWakale, G. R., Choudhary, E., Samtham, M., Patil, A., Yadav, A., Yadav, S., Sharma, R., Ma, Y. R., Jangir, R., & Jadhav, H. (2025). Morphology-driven interlinked 2D nanostructures anchored nickel cobalt sulfide (NiCo2S4) electrodes for high-performance symmetric supercapacitor. Journal of Energy Storage, 136. https://doi.org/10.1016/j.est.2025.118488en_US
dc.identifier.issn2352-152X-
dc.identifier.otherEID(2-s2.0-105017124510)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.est.2025.118488-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16981-
dc.description.abstractNickel cobalt sulfide (NiCo<inf>2</inf>S<inf>4</inf>; NCS) is known for its notable inherent electronic conductivity and high theoretical capacity, attributed to its excellent redox behavior. However, developing well-defined hierarchical nanostructured NCS with ample electroactive interfaces remains a persistent challenge. In this study, we report reaction time-dependent hydrothermal synthesis of NCS nanoparticles, which transform into nanoflakes under controlled reaction conditions. With extended reaction duration, these nanoflakes further interlinked to form hierarchical discs and micro-flowers like morphologies. The cubic crystalline NCS nanostructures with larger specific surfaces and Ni2+/Ni3+, Co3+/Co2+, and S2− oxidation states exhibit remarkable electrochemical redox activity in alkaline electrolyte. NCS micro-flowers composed of interlinked 2D nanoflakes (NCS10) exhibit specific capacitance (C<inf>s</inf>) of 1062.7 F g−1 at current density of 1 A g−1 and C<inf>s</inf> retention of 93.5 % after continuous 5000 GCD cycles in three-electrode configuration. When employed in a symmetric solid-state battery-type supercapacitor, the NCS10 electrode delivered C<inf>s</inf> of 72.52 F g−1 at 1 A g−1 and maximum energy density (E<inf>d</inf>) of 17.02 Wh kg−1 and power density (P<inf>d</inf>) of 5.02 kW kg−1. The 2-electrode device also offered satisfactory long-term stability with 86.27 % retention after 1000 cycles. Our study elucidates the critical role of morphology in enhancing the electrochemical performance of Ni-Co sulfide electrodes, highlighting their real-time potential for high-performance supercapacitors. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceJournal of Energy Storageen_US
dc.subjectEnergy Densityen_US
dc.subjectHierarchical Nanostructuresen_US
dc.subjectNico2s4en_US
dc.subjectPower Densityen_US
dc.subjectSymmetric Deviceen_US
dc.subjectCobalt Compoundsen_US
dc.subjectCobalt Depositsen_US
dc.subjectElectrochemical Electrodesen_US
dc.subjectElectrolytesen_US
dc.subjectElectrolytic Capacitorsen_US
dc.subjectMorphologyen_US
dc.subjectNanostructuresen_US
dc.subjectNickel Compoundsen_US
dc.subjectRedox Reactionsen_US
dc.subjectSolid State Devicesen_US
dc.subjectSulfur Compoundsen_US
dc.subjectSynthesis (chemical)en_US
dc.subjectCobalt Sulphidesen_US
dc.subjectElectronic Conductivityen_US
dc.subjectEnergy Densityen_US
dc.subjectHierarchical Nanostructuresen_US
dc.subjectNano-flakesen_US
dc.subjectPerformanceen_US
dc.subjectPower Densitiesen_US
dc.subjectSymmetric Deviceen_US
dc.subjectSymmetricsen_US
dc.subjectTheoretical Capacityen_US
dc.subjectSupercapacitoren_US
dc.titleMorphology-driven interlinked 2D nanostructures anchored nickel cobalt sulfide (NiCo2S4) electrodes for high-performance symmetric supercapacitoren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: