Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17061
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKokare, Manojkumar B.en_US
dc.contributor.authorGautam, Sumiten_US
dc.contributor.authorSwaminathan, R.en_US
dc.contributor.authorSharma, Nehaen_US
dc.date.accessioned2025-10-31T17:41:00Z-
dc.date.available2025-10-31T17:41:00Z-
dc.date.issued2025-
dc.identifier.citationKokare, M. B., Gautam, S., Swaminathan, R., Sharma, N., Kaushik, A., & Chatzinotas, S. (2025). Optimizing SWIPT in Multi-RIS Aided V2I Networks: A Deep Learning Approach. Conference Record - International Conference on Communications, 6167–6172. https://doi.org/10.1109/ICC52391.2025.11161813en_US
dc.identifier.isbn9781538674628-
dc.identifier.isbn9781612842332-
dc.identifier.isbn0780300068-
dc.identifier.isbn9781467331227-
dc.identifier.isbn9781538680889-
dc.identifier.isbn078030599X-
dc.identifier.isbn9781424403530-
dc.identifier.isbn0780309510-
dc.identifier.isbn9781612849553-
dc.identifier.isbn9781467381963-
dc.identifier.issn1550-3607-
dc.identifier.issn0536-1486-
dc.identifier.otherEID(2-s2.0-105018458009)-
dc.identifier.urihttps://dx.doi.org/10.1109/ICC52391.2025.11161813-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17061-
dc.description.abstractThis paper investigates the effectiveness of employing multiple reconfigurable intelligent surfaces (RIS) for simultaneous wireless information and power transfer (SWIPT) in a vehicle-to-infrastructure (V2I) system. The optimal RIS is selected for transmission based on instantaneous signal-to-noise ratio (SNR) values, with the objective of optimizing the SWIPT system employing the power-splitting (PS) protocol and nonlinear energy harvesting (NL-EH). A unified objective is proposed to maximize information rate and harvested energy via joint optimization of transmit power and power splitting factor. Nonconvexity is addressed via an iterative algorithm, supported by closed-form expressions obtained through Karush-Kuhn-Tucker (KKT) conditions. Monte-Carlo simulations are performed to validate the accuracy of the analytical expressions. Additionally, a deep neural network (DNN) framework is introduced for realtime optimization prediction, achieving superior SWIPT performance over single RIS configurations with reduced complexity and faster execution. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceConference Record - International Conference on Communicationsen_US
dc.subjectand vehicle-to-infrastructure (V2I)en_US
dc.subjectDeep neural network (DNN)en_US
dc.subjectmulti-RISen_US
dc.subjectreconfigurable intelligent surfaces (RIS)en_US
dc.subjectsimultaneous wireless information and power transfer (SWIPT)en_US
dc.titleOptimizing SWIPT in Multi-RIS Aided V2I Networks: A Deep Learning Approachen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: