Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17165
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPandey, Nikhil Kumaren_US
dc.contributor.authorSatyam, Neelima D.en_US
dc.date.accessioned2025-11-12T16:56:47Z-
dc.date.available2025-11-12T16:56:47Z-
dc.date.issued2025-
dc.identifier.citationPandey, N. K., & Satyam, N. D. (2025). Experimental Study on Debris Flow Deposition and Feature Importance of Particles with Varying Water Content. In Lecture Notes in Civil Engineering: Vol. 669 LNCE. https://doi.org/10.1007/978-981-96-7767-2_28en_US
dc.identifier.isbn9789819620951-
dc.identifier.isbn9789819674879-
dc.identifier.isbn9789819616053-
dc.identifier.isbn9783031988929-
dc.identifier.isbn9783031927539-
dc.identifier.isbn9783031920431-
dc.identifier.isbn9789819652051-
dc.identifier.isbn9789819620333-
dc.identifier.isbn9789811613029-
dc.identifier.isbn9789819798308-
dc.identifier.issn23662565-
dc.identifier.issn23662557-
dc.identifier.otherEID(2-s2.0-105020208965)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-981-96-7767-2_28-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17165-
dc.description.abstractThe Western Himalayas in India have experienced increased debris flow hazards due to intensified precipitation and landslides. This study investigates the dynamics of debris flow deposition using an experimental flume setup, simulating conditions in the Western Indian Himalayas. A total of 32 experiments were conducted, manipulating water content and the proportion of stony particles in debris mixtures. The study utilized machine learning techniques, particularly XGBoost, to analyze the feature importance of various parameters on flow characteristics, including deposit length, width, and thickness. The findings highlighted the significant influence of stony particles, with a composition of 8–12% markedly impacting deposit thickness and width. Additionally, water content played a critical role, negatively affecting deposit thickness while enhancing mobility. The high predictive accuracy of the XGBoost model underscores the importance of understanding debris flow mechanisms to mitigate geohazard risks. This research contributes valuable insights into the morphodynamic processes governing debris flow deposition, providing a foundation for more effective disaster mitigation strategies in the region. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Civil Engineeringen_US
dc.subjectDebris flowen_US
dc.subjectDepositionen_US
dc.subjectStony particlesen_US
dc.subjectWater contenten_US
dc.titleExperimental Study on Debris Flow Deposition and Feature Importance of Particles with Varying Water Contenten_US
dc.typeConference Paperen_US
Appears in Collections:Department of Civil Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: