Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17169
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRasendiran, Ezhini R.en_US
dc.contributor.authorMaurya, Chandresh Kumaren_US
dc.date.accessioned2025-11-12T16:56:47Z-
dc.date.available2025-11-12T16:56:47Z-
dc.date.issued2025-
dc.identifier.citationRasendiran, E. R., & Maurya, C. K. (2025). Improving Bird Classification with Primary Color Additives. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 1703–1707. https://doi.org/10.21437/Interspeech.2025-2516en_US
dc.identifier.isbn9781713836902-
dc.identifier.isbn9781713820697-
dc.identifier.isbn9781605603162-
dc.identifier.isbn9781617821233-
dc.identifier.isbn9781604234497-
dc.identifier.issn29581796-
dc.identifier.issn2308457X-
dc.identifier.otherEID(2-s2.0-105020038405)-
dc.identifier.urihttps://dx.doi.org/10.21437/Interspeech.2025-2516-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17169-
dc.description.abstractWe address the problem of classifying bird species using their song recordings, a challenging task due to environmental noise, overlapping vocalizations, and missing labels. Existing models struggle with low-SNR or multi-species recordings. We hypothesize that birds can be classified by visualizing their pitch pattern, speed, and repetition-collectively called motifs. Deep learning models applied to spectrogram images help, but similar motifs across species cause confusion. To mitigate this, we embed frequency information into spectrograms using primary color additives. This enhances species distinction, improving classification accuracy. Our experiments show that the proposed approach achieves statistically significant gains over models without colorization and surpasses the BirdCLEF 2024 winner, improving F1 by 7.3%, ROC-AUC by 6.2%, and CMAP by 6.6%. These results show the effectiveness of incorporating frequency information via colorization. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInternational Speech Communication Associationen_US
dc.sourceProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECHen_US
dc.subjectAudio Classificationen_US
dc.subjectBird Classificationen_US
dc.subjectBirdCLEF-2024en_US
dc.subjectEfficientNeten_US
dc.titleImproving Bird Classification with Primary Color Additivesen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering
Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: