Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17213
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChandra, Souraven_US
dc.date.accessioned2025-11-21T11:13:20Z-
dc.date.available2025-11-21T11:13:20Z-
dc.date.issued2025-
dc.identifier.citationAnanda, K.S.R.en_US
dc.identifier.citationMaiti, R., Chandra, S., & Biswas, A. (2025). Feature Extraction to Classify Parkinsonian Tremor in EMG Signals. In Lecture Notes in Mechanical Engineering (Vol. 96). https://doi.org/10.1007/978-981-96-6414-6_22en_US
dc.identifier.isbn9789819650583-
dc.identifier.isbn9783031991585-
dc.identifier.isbn9783031948886-
dc.identifier.isbn9789819667314-
dc.identifier.isbn9789811937156-
dc.identifier.isbn9783030703318-
dc.identifier.isbn9789811622779-
dc.identifier.isbn9789811969447-
dc.identifier.isbn9789819701056-
dc.identifier.isbn9789819748051-
dc.identifier.issn2195-4364-
dc.identifier.issn2195-4356-
dc.identifier.otherEID(2-s2.0-105020848503)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-981-96-6414-6_22-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17213-
dc.description.abstractAccurate early diagnosis of PD remains challenging due to lack of specific biomarkers. Recent literature indicates multimodal signal processing approach to characterize PD markers. PD tremor reflects in lower EMG signal frequencies with some overlap with other types of tremor response. Therefore, frequency alone can’t differentiate various tremors for diagnosis of PD. This work aims to develop robust algorithms for extracting PD related features in EMG. Data are collected from online databases. Results on different EMG signal processing shows certain variation but not very distinct to differentiate PD from the counterpart. Calculated Power of Wavelet cross-scalogram is different in PD subjects compared to normal subjects. Artificial Neural Network based machine learning classifiers are applied to identify PD response from normal based on EMG data with 75% and 92% accuracy during work and rest respectively, which can be used for early PD diagnosis. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Mechanical Engineeringen_US
dc.subjectANNen_US
dc.subjectEMGen_US
dc.subjectMachine learningen_US
dc.subjectParkinson diseaseen_US
dc.subjectPower spectrumen_US
dc.subjectSTFTen_US
dc.subjectTremoren_US
dc.subjectWavelet transformen_US
dc.titleFeature Extraction to Classify Parkinsonian Tremor in EMG Signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Mehta Family School of Biosciences and Biomedical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: