Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/17241
Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Das, Asish Kumar | en_US |
| dc.contributor.author | Kumar, Sunil | en_US |
| dc.contributor.author | en_US | |
| dc.date.accessioned | 2025-11-27T13:46:15Z | - |
| dc.date.available | 2025-11-27T13:46:15Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Das, A. K., & Kumar, S. (2025). In Situ Polymerization-Enabled Facile Electrode Interface in Solid-State Lithium–Metal Batteries. ACS Applied Electronic Materials, 7(21), 9994–10000. https://doi.org/10.1021/acsaelm.5c01889 | en_US |
| dc.identifier.issn | 2637-6113 | - |
| dc.identifier.other | EID(2-s2.0-105021873195) | - |
| dc.identifier.uri | https://dx.doi.org/10.1021/acsaelm.5c01889 | - |
| dc.identifier.uri | https://dspace.iiti.ac.in:8080/jspui/handle/123456789/17241 | - |
| dc.description.abstract | Here, a ceramic–polymer composite membrane consisting of P(VDF-HFP), LiTFSI, and a high-entropy rhombohedral NASICON-structured ceramic filler Li<inf>1.3</inf>Al<inf>0.1</inf>Sc<inf>0.1</inf>Y<inf>0.1</inf>Sn<inf>1.7/3</inf>Zr<inf>1.7/3</inf>Ti<inf>1.7/3</inf>(PO<inf>4</inf>)<inf>3</inf>was employed as the solid electrolyte in the batteries. Further, the facile electrode interface was engineered via ring polymerization of 1,3-dioxolane (DOL) containing different lithium salts (LiTFSI, LiFSI, and LiDFOB) catalyzed by a LiPF<inf>6</inf>salt. The synergistic effect of different salts provided a robust interphase at the lithium metal interface, enabling stable lithium plating/stripping in Li|Li coin cell configurations with a critical current density of ∼1 mA cm–2at room temperature. The in situ polymerized matrix also facilitated the formation of potential lithium-ion conduit channels at the cathode side and the electrolyte–electrode interface, thereby mitigating key transport limitations that hinder the performance of conventional polymer electrolyte-based solid-state batteries. The Li|LiFePO<inf>4</inf>coin cell configuration demonstrated excellent cyclability with a discharge capacity of 107 mAh g–1after 500 cycles at 1C. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | American Chemical Society | en_US |
| dc.source | ACS Applied Electronic Materials | en_US |
| dc.subject | ceramic−polymer composite | en_US |
| dc.subject | critical current density | en_US |
| dc.subject | in situ polymerization | en_US |
| dc.subject | lithium metal batteries | en_US |
| dc.subject | solid electrolytes | en_US |
| dc.title | In Situ Polymerization-Enabled Facile Electrode Interface in Solid-State Lithium–Metal Batteries | en_US |
| dc.type | Journal Article | en_US |
| Appears in Collections: | Department of Metallurgical Engineering and Materials Sciences | |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: