Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimal B.en_US
dc.date.accessioned2025-12-04T10:00:50Z-
dc.date.available2025-12-04T10:00:50Z-
dc.date.issued2025-
dc.identifier.citationSingh, U. K., Mitra, R., Mishra, A. K., Bhatia, V. B., Venkateswaran, K., & Thipparaju, R. R. (2025). Hyperparameter Free MEEF Based Adaptive Estimator for MIMO Radar. Proceedings of the IEEE Radar Conference, 740–745. https://doi.org/10.1109/RadarConf2559087.2025.11205019en_US
dc.identifier.isbn9798331544331-
dc.identifier.isbn9781665436694-
dc.identifier.isbn9798350329209-
dc.identifier.isbn9781665482783-
dc.identifier.isbn9781665498142-
dc.identifier.isbn9798350362381-
dc.identifier.isbn9798331539566-
dc.identifier.issn1097-5764-
dc.identifier.issn2375-5318-
dc.identifier.otherEID(2-s2.0-105022491345)-
dc.identifier.urihttps://dx.doi.org/10.1109/RadarConf2559087.2025.11205019-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17309-
dc.description.abstractIn the context of parameter estimation for nextgeneration nonlinear radar system models impaired by nonGaussian clutter, reproducing kernel Hilbert space (RKHS)-based signal processing algorithms and information-theoretic learning (ITL) have emerged as promising. Notably, the RKHS and ITLbased approaches are found to outperform conventional maximum likelihood (ML) based methods. However, these RKHS/ITLbased approaches, together with neural network/Bayesian-based approaches, are known to depend on hyperparameters for parameter/criterion estimation. In the context of next-generation radar, this paper introduces a minimum error entropy with fiducial points (MEEF)-based parameter estimation for multi-input-multiple-output (MIMO) radar to estimate target position and velocity amid non-Gaussian additive noise processes, such as clutter. Furthermore, we utilize a kernel width sampling method to make the proposed MEEF estimator hyperparameter-free. The proposed hyperparameter-free MEEF-based RKHS estimator with kernel width sampling (MEEF-KWS) is found to outperform minimum mean squared error (MMSE) and other ITL-based adaptive estimation techniques with fixed best kernel width. Computer simulations are presented assuming practical MIMO radar scenarios, which indicate that the proposed hyperparameter-free MEEF-KWS delivers improved estimation accuracy and/or lower computations compared to the existing RKHS-based MMSE and other common ITL criteria with fixed kernel width. © 2025 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.sourceProceedings of the IEEE Radar Conferenceen_US
dc.subjectITLen_US
dc.subjectKernel Width Samplingen_US
dc.subjectMCCen_US
dc.subjectMEEFen_US
dc.subjectMIMO radaren_US
dc.subjectRKHSen_US
dc.titleHyperparameter Free MEEF Based Adaptive Estimator for MIMO Radaren_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: