Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSajid, M.en_US
dc.contributor.authorAkhtar, Mushiren_US
dc.contributor.authorQuadir, A.en_US
dc.contributor.authorTanveer, M. Sayeden_US
dc.date.accessioned2025-12-17T13:28:57Z-
dc.date.available2025-12-17T13:28:57Z-
dc.date.issued2025-
dc.identifier.citationSajid, M., Mushir Akhtar, A. Quadir, and M. Tanveer. 2025. “RVFL-X: A Novel Randomized Network Based on Complex Transformed Real-Valued Tabular Datasets.” in Proc Int Jt Conf Neural Networks. Institute of Electrical and Electronics Engineers Inc.en_US
dc.identifier.isbn9781509060146-
dc.identifier.isbn9780738133669-
dc.identifier.isbn9781728119854-
dc.identifier.isbn9781665488679-
dc.identifier.isbn9781457710865-
dc.identifier.isbn9798350359312-
dc.identifier.isbn9781728169262-
dc.identifier.isbn9781728186719-
dc.identifier.isbn9781509061815-
dc.identifier.isbn9781509006199-
dc.identifier.issn2161-4393-
dc.identifier.otherEID(2-s2.0-105023970040)-
dc.identifier.urihttps://dx.doi.org/10.1109/IJCNN64981.2025.11227691-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17462-
dc.description.abstractRecent advancements in neural networks, supported by foundational theoretical insights, emphasize the superior representational power of complex numbers. However, their adoption in randomized neural networks (RNNs) has been limited due to the lack of effective methods for transforming real-valued tabular datasets into complex-valued representations. To address this limitation, we propose two methods for generating complex-valued representations from real-valued datasets: a natural transformation and an autoencoder-driven method. Building on these mechanisms, we propose RVFL-X, a complex-valued extension of the random vector functional link (RVFL) network. RVFL-X integrates complex transformations into real-valued datasets while maintaining the simplicity and efficiency of the original RVFL architecture. By leveraging complex components such as input, weights, and activation functions, RVFL-X processes complex representations and produces real-valued outputs. Comprehensive evaluations on 80 real-valued UCI datasets demonstrate that RVFL-X consistently outperforms both the original RVFL and state-of-the-art (SOTA) RNN variants, showcasing its robustness and effectiveness across diverse application domains. © 2025 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.subjectAutoencoderen_US
dc.subjectComplex-valueden_US
dc.subjectExtreme learning machine (ELM)en_US
dc.subjectNeuro-Fuzzyen_US
dc.subjectRandom vector functional link (RVFL)en_US
dc.subjectRandomized neural network (RNN)en_US
dc.subjectReal-valueden_US
dc.titleRVFL-X: A Novel Randomized Network Based on Complex Transformed Real-Valued Tabular Datasetsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: