Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17729
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Sourabhen_US
dc.contributor.authorKanhaiya, Kunvaren_US
dc.contributor.authorMagadum, Pralhaden_US
dc.contributor.authorPatel, Riturajen_US
dc.contributor.authorKushwaha, Aniruddha Singhen_US
dc.date.accessioned2026-01-20T06:11:11Z-
dc.date.available2026-01-20T06:11:11Z-
dc.date.issued2026-
dc.identifier.citationSingh, S., Kanhaiya, K., Magadum, P., & Kushwaha, A. S. (2026). Enabling Seamless Integration of ML-Based Network Functions into the Network Dataplane. IEEE Networking Letters. https://doi.org/10.1109/LNET.2025.3649955en_US
dc.identifier.otherEID(2-s2.0-105026399462)-
dc.identifier.urihttps://dx.doi.org/10.1109/LNET.2025.3649955-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17729-
dc.description.abstractThe current network device architecture lacks a comprehensive framework for deploying machine learning (ML) network functions in the data plane. This letter presents a primitive-based ML framework for deploying network functions directly onto the programmable dataplane. The ML primitives are introduced as modular building blocks that enable software-to-hardware model translation. We demonstrate the framework’s functionality by defining primitives for an Artificial Neural Network model. Additionally, a two-stage approximation–model pruning and hardware-aware primitive tuning–reduces the implementation complexity of the ML model. The resulting implementation maintains inference accuracy and resource efficiency, making it suitable for resource-constrained data plane environments. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Networking Lettersen_US
dc.subjectData-Plane Programmabilityen_US
dc.subjectIn-Network Intelligenceen_US
dc.subjectMachine learningen_US
dc.subjectP4en_US
dc.subjectPrimitivesen_US
dc.subjectSDNen_US
dc.titleEnabling Seamless Integration of ML-Based Network Functions into the Network Dataplaneen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access-
dc.rights.licenseGold Open Access-
dc.rights.licenseGreen Accepted Open Access-
dc.rights.licenseGreen Open Access-
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: