Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/366
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tiwari, Aruna | en_US |
dc.date.accessioned | 2022-02-08T01:00:00Z | - |
dc.date.available | 2022-02-08T01:00:00Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Bhardwaj, A., & Tiwari, A. (2013). A novel genetic programming based classifier design using a new constructive crossover operator with a local search technique doi:10.1007/978-3-642-39479-9_11 | en_US |
dc.identifier.isbn | 978-3642394782 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.other | EID(2-s2.0-84882740972) | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-642-39479-9_11 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/366 | - |
dc.description.abstract | A common problem in genetic programming search algorithms is the destructive nature of the crossover operator in which the offspring of good parents generally has worse performance than the parents. Designing constructive crossover operators and integrating some local search techniques into the breeding process have been suggested as solutions. In this paper, we proposed the integration of variants of local search techniques in the breeding process, done by allowing parents to produce many off springs and applying a selection procedure to choose high performing off springs. Our approach has removed the randomness of crossover operator. To demonstrate our approach, we designed a Multiclass classifier and tested it on various benchmark datasets. Our method has shown the tremendous improvement over the other state of the art methods. � 2013 Springer-Verlag. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | BC01; | en_US |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.subject | Benchmark datasets | en_US |
dc.subject | Classifier design | en_US |
dc.subject | Crossover | en_US |
dc.subject | Crossover operator | en_US |
dc.subject | Local search techniques | en_US |
dc.subject | Multi-class classifier | en_US |
dc.subject | Selection procedures | en_US |
dc.subject | State-of-the-art methods | en_US |
dc.subject | Genetic programming | en_US |
dc.subject | Intelligent computing | en_US |
dc.subject | Information analysis | en_US |
dc.title | A novel genetic programming based classifier design using a new constructive crossover operator with a local search technique | en_US |
dc.type | Conference Paper | en_US |
Appears in Collections: | Department of Computer Science and Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BC01.pdf Restricted Access | 199.4 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: