Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatel, Om Prakashen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2016-10-25T08:14:32Z-
dc.date.available2016-10-25T08:14:32Z-
dc.date.issued2014-
dc.identifier.citationPatel, O. P., & Tiwari, A. (2014). Quantum inspired binary neural network algorithm. Paper presented at the Proceedings - 2014 13th International Conference on Information Technology, ICIT 2014, 270-274. doi:10.1109/ICIT.2014.29en_US
dc.identifier.otherEID(2-s2.0-84988267172)-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/378-
dc.identifier.urihttps://doi.org/10.1109/ICIT.2014.29-
dc.description.abstractIn this paper a novel quantum based binary neural network learning algorithm is proposed. It forms three layer network structure. The proposed method make use of quantum concept for updating and finalizing weights of the neurons and it works for two class problem. The use of quantum concept form an optimized network structure. Also performance in terms of number of neurons and classification accuracy is improved. Same is compared with a quantum-based algorithm for optimizing artificial neural networks algorithm(QANN). It is found that there is improvement in the form of number of neurons at hidden layer, number of iterations, training accuracy and generalization accuracy.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofseriesCP11;en_US
dc.sourceProceedings - 2014 13th International Conference on Information Technology, ICIT 2014en_US
dc.subjectBackpropagationen_US
dc.subjectNetwork layersen_US
dc.subjectNeural networksen_US
dc.subjectNeuronsen_US
dc.subjectBackpropagation learningen_US
dc.subjectBinary neural networksen_US
dc.subjectClassification accuracyen_US
dc.subjectGeneralization accuracyen_US
dc.subjectNetwork structuresen_US
dc.subjectNumber of iterationsen_US
dc.subjectQubitsen_US
dc.subjectTraining accuracyen_US
dc.subjectAlgorithmsen_US
dc.titleQuantum inspired binary neural network algorithmen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
File Description SizeFormat 
CP11.pdf
  Restricted Access
218.02 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: