Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/3806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, Atreyeeen_US
dc.contributor.authorSamadhiya, Kanchanen_US
dc.contributor.authorBala, Kiranen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:30:42Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:30:42Z-
dc.date.issued2022-
dc.identifier.citationGhosh, A., Samadhiya, K., & Kiran, B. (2022). Multi-objective tailored optimization deciphering carbon partitioning and metabolomic tuning in response to elevated CO2 levels, organic carbon and sparging period. Environmental Research, 204 doi:10.1016/j.envres.2021.112137en_US
dc.identifier.issn0013-9351-
dc.identifier.otherEID(2-s2.0-85115929239)-
dc.identifier.urihttps://doi.org/10.1016/j.envres.2021.112137-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/3806-
dc.description.abstractMicroalgae have garnered much contemplation as candidates to fix CO2 into valuable compounds. Although microalgae have been studied to produce various metabolites, they have not yet proved successful for commercialization. Since, handling such problems practically requires satisfying multiple parameters simultaneously, we put forth a multi-parameter optimization strategy to manipulate the carbon metabolism of Scenedesmus sp. to improve biomass production and enhance CO2 fixation to increase the production of fuel-related metabolites. The Box-Behnken design method was applied with CO2 concentration, CO2 sparging time and glucose concentration as independent variables; biomass and total fatty acid methyl ester (total FAME) content were analyzed as response variables. The strain is supplemented with both CO2 and glucose with an aim to enhance carbon flux and rechannel it towards carbon fixation. As per the results obtained in this study, Scenedesmus sp. could effectively exploit high CO2 concentration (15%) for longer duration under high concentration of glucose supplementation (9 g/L) producing a biomass of 635.24 ± 39.9 μg/mL with a high total fatty acid methyl ester (FAME) content of 71.29 ± 4.2 μg/mg, significant acetyl-CoA carboxylase enzyme activity and a favorable fatty acid profile: 35.8% palmitic acid, 10.5% linoleic acid and 30.6% linolenic acid. The carbohydrate content was maximum at 10% CO2 sparged for the longest duration of 90 min under glucose concentration of 9 g/L. This study puts forth an optimal design that can provide evidence on comprehending the carbon assimilation mechanism to enhance production of biomass and biofuels and provide conditions to microalgal species to tolerate CO2 rich flue gas. © 2021 Elsevier Inc.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc.en_US
dc.sourceEnvironmental Researchen_US
dc.subjectacetyl coenzyme A carboxylaseen_US
dc.subjectcarbonen_US
dc.subjectcarbon dioxideen_US
dc.subjectfatty acid esteren_US
dc.subjectglucoseen_US
dc.subjectlinoleic aciden_US
dc.subjectlinolenic aciden_US
dc.subjectorganic carbonen_US
dc.subjectpalmitic aciden_US
dc.subjectcarbohydrateen_US
dc.subjectcarbon dioxideen_US
dc.subjectcarbon fixationen_US
dc.subjectconcentration (composition)en_US
dc.subjectdetection methoden_US
dc.subjectenzymeen_US
dc.subjectenzyme activityen_US
dc.subjectfatty aciden_US
dc.subjectmetabolismen_US
dc.subjectmicroalgaen_US
dc.subjectoptimizationen_US
dc.subjectalgal growthen_US
dc.subjectArticleen_US
dc.subjectbiofuel productionen_US
dc.subjectbiomassen_US
dc.subjectbiomass productionen_US
dc.subjectcarbohydrate analysisen_US
dc.subjectcarbon fixationen_US
dc.subjectcarbon metabolismen_US
dc.subjectcarbon partitioningen_US
dc.subjectconcentration responseen_US
dc.subjectcontrolled studyen_US
dc.subjectenzyme activityen_US
dc.subjectflue gasen_US
dc.subjectindependent variableen_US
dc.subjectmetabolomicsen_US
dc.subjectnonhumanen_US
dc.subjectphotosynthesisen_US
dc.subjectprotein analysisen_US
dc.subjectresponse variableen_US
dc.subjectScenedesmusen_US
dc.subjectspargingen_US
dc.subjectScenedesmusen_US
dc.titleMulti-objective tailored optimization deciphering carbon partitioning and metabolomic tuning in response to elevated CO2 levels, organic carbon and sparging perioden_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Biosciences and Biomedical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: