Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/3914
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSk, Md Fulbabuen_US
dc.contributor.authorRoy, Rajarshien_US
dc.contributor.authorJonniya, Nisha Amarnathen_US
dc.contributor.authorPoddar, Sayanen_US
dc.contributor.authorKar, Parimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:31:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:31:00Z-
dc.date.issued2021-
dc.identifier.citationSk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2021). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics, 39(10), 3649-3661. doi:10.1080/07391102.2020.1768149en_US
dc.identifier.issn0739-1102-
dc.identifier.otherEID(2-s2.0-85086655907)-
dc.identifier.urihttps://doi.org/10.1080/07391102.2020.1768149-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/3914-
dc.description.abstractThe recent outbreak of novel “coronavirus disease 2019” (COVID-19) has spread rapidly worldwide, causing a global pandemic. In the present work, we have elucidated the mechanism of binding of two inhibitors, namely α-ketoamide and Z31792168, to SARS-CoV-2 main protease (Mpro or 3CLpro) by using all-atom molecular dynamics simulations and free energy calculations. We calculated the total binding free energy (ΔGbind) of both inhibitors and further decomposed ΔGbind into various forces governing the complex formation using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. Our calculations reveal that α-ketoamide is more potent (ΔGbind= − 9.05 kcal/mol) compared to Z31792168 (ΔGbind= − 3.25 kcal/mol) against COVID-19 3CLpro. The increase in ΔGbind for α-ketoamide relative to Z31792168 arises due to an increase in the favorable electrostatic and van der Waals interactions between the inhibitor and 3CLpro. Further, we have identified important residues controlling the 3CLpro-ligand binding from per-residue based decomposition of the binding free energy. Finally, we have compared ΔGbind of these two inhibitors with the anti-HIV retroviral drugs, such as lopinavir and darunavir. It is observed that α-ketoamide is more potent compared to lopinavir and darunavir. In the case of lopinavir, a decrease in van der Waals interactions is responsible for the lower binding affinity compared to α-ketoamide. On the other hand, in the case of darunavir, a decrease in the favorable intermolecular electrostatic and van der Waals interactions contributes to lower affinity compared to α-ketoamide. Our study might help in designing rational anti-coronaviral drugs targeting the SARS-CoV-2 main protease. Communicated by Ramaswamy H. Sarma. © 2020 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.sourceJournal of Biomolecular Structure and Dynamicsen_US
dc.subjectalpha ketoamideen_US
dc.subjectanti-SARS-CoV-2 agenten_US
dc.subjectanticoronavirus agenten_US
dc.subjectdarunaviren_US
dc.subjectlopinaviren_US
dc.subjectunclassified drugen_US
dc.subjectz 31792168en_US
dc.subjectpeptide hydrolaseen_US
dc.subjectproteinase inhibitoren_US
dc.subjectantiviral activityen_US
dc.subjectArticleen_US
dc.subjectbinding affinityen_US
dc.subjectcalculationen_US
dc.subjectcomplex formationen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug bindingen_US
dc.subjectdrug mechanismen_US
dc.subjectdrug potencyen_US
dc.subjectenergyen_US
dc.subjectligand bindingen_US
dc.subjectmolecular dynamicsen_US
dc.subjectnonhumanen_US
dc.subjectSevere acute respiratory syndrome coronavirus 2en_US
dc.subjectstatic electricityen_US
dc.subjecthumanen_US
dc.subjectmolecular dynamicsen_US
dc.subjectpandemicen_US
dc.subjectCOVID-19en_US
dc.subjectHumansen_US
dc.subjectMolecular Dynamics Simulationen_US
dc.subjectPandemicsen_US
dc.subjectPeptide Hydrolasesen_US
dc.subjectProtease Inhibitorsen_US
dc.subjectSARS-CoV-2en_US
dc.titleElucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculationsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Bronze, Green-
Appears in Collections:Department of Biosciences and Biomedical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: