Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4570
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaghel, Vivek Singhen_US
dc.contributor.authorSrivastava, Akhilesh Mohanen_US
dc.contributor.authorPrakash, Suryaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:34:51Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:34:51Z-
dc.date.issued2021-
dc.identifier.citationBaghel, V. S., Srivastava, A. M., Prakash, S., & Singh, S. (2021). Minutiae points extraction using faster R-CNN doi:10.1007/978-981-15-8610-1_1en_US
dc.identifier.isbn9789811586095-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85097650426)-
dc.identifier.urihttps://doi.org/10.1007/978-981-15-8610-1_1-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4570-
dc.description.abstractA fingerprint is an impression of the friction ridges of all parts of the finger and it is a widely used biometric trait. In a fingerprint authentication system, minutiae points are used as features to authenticate an individual. There are many traditional techniques which have been proposed to extract minutiae points from a fingerprint. However, efficiently locating minutiae points in a fingerprint image is still a challenging problem. In this paper, we propose a technique to locate and classify the minutiae points based on Faster R-CNN, which is a combination of region proposal network (RPN) and detection network. We use IIT Kanpur fingerprint database to evaluate the proposed technique and to show the performance. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectIntelligent computingen_US
dc.subjectBiometric traitsen_US
dc.subjectDetection networksen_US
dc.subjectFingerprint authentication systemen_US
dc.subjectFingerprint databaseen_US
dc.subjectFingerprint imagesen_US
dc.subjectMinutiae pointsen_US
dc.subjectTraditional techniquesen_US
dc.subjectConvolutional neural networksen_US
dc.titleMinutiae Points Extraction Using Faster R-CNNen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: