Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4571
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJha, Preetien_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorBharill, Nehaen_US
dc.contributor.authorMounika, Mukkamallaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:34:52Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:34:52Z-
dc.date.issued2021-
dc.identifier.citationJha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Nagendra, N., & Mounika, M. (2021). Fuzzy-based kernelized clustering algorithms for handling big data using apache spark doi:10.1007/978-981-15-8603-3_37en_US
dc.identifier.isbn9789811586026-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85097096194)-
dc.identifier.urihttps://doi.org/10.1007/978-981-15-8603-3_37-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4571-
dc.description.abstractIn this paper, we propose a novel Kernelized Scalable Random Sampling with Iterative Optimization Fuzzy c-Means (KSRSIO-FCM) and a Kernelized Scalable Literal Fuzzy c-Means (KSLFCM) clustering algorithms for big data framework. The evolution of kernelized clustering algorithms led us to deal with the nonlinear separable problems by applying kernel Radial Basis Functions (RBF) which map the input data space nonlinearly into a high-dimensional feature space. The experimental result shows that the KSRSIO-FCM algorithm achieves significant improvement in terms of F-score, Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI) for Big Data. Experimentation is performed on well-known IRIS datasets to show the effectiveness of proposed KSRSIO-FCM in comparison with KSLFCM. The KSRSIO-FCM implemented on Apache Spark shows better potential for Big Data clustering. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectBig dataen_US
dc.subjectFuzzy systemsen_US
dc.subjectIterative methodsen_US
dc.subjectSoft computingen_US
dc.subjectAdjusted rand indexen_US
dc.subjectData clusteringen_US
dc.subjectHigh-dimensional feature spaceen_US
dc.subjectIterative Optimizationen_US
dc.subjectNonlinear separable problemsen_US
dc.subjectNormalized mutual informationen_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectRandom samplingen_US
dc.subjectClustering algorithmsen_US
dc.titleFuzzy-Based Kernelized Clustering Algorithms for Handling Big Data Using Apache Sparken_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: