Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChauhan, Vikasen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:34:52Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:34:52Z-
dc.date.issued2020-
dc.identifier.citationChauhan, V., Tiwari, A., & Arya, S. (2020). Multi-label classifier based on kernel random vector functional link network. Paper presented at the Proceedings of the International Joint Conference on Neural Networks, doi:10.1109/IJCNN48605.2020.9207436en_US
dc.identifier.isbn9781728169262-
dc.identifier.otherEID(2-s2.0-85093845636)-
dc.identifier.urihttps://doi.org/10.1109/IJCNN48605.2020.9207436-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4576-
dc.description.abstractIn this paper, a kernelized version of the random vector functional link network is proposed for multi-label classification. This classifier uses pseudoinverse to find output weights of the network. As pseudoinverse is non-iterative in nature, it requires less fine-tuning to train the network. Kernelization of RVFL makes it robust and stable as no need to tune the number of neuron in the enhancement layer. A threshold function is used with a kernelized random vector functional link network to make it suitable for multi-label learning problems. Experiments performed on three benchmark multi-label datasets bibtex, emotions, and scene shows that proposed classifier outperforms various the existing multi-label classifiers. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of the International Joint Conference on Neural Networksen_US
dc.subjectNeural networksen_US
dc.subjectEnhancement Layersen_US
dc.subjectFunctional-link networken_US
dc.subjectKernelizationen_US
dc.subjectMulti label classificationen_US
dc.subjectMulti-label learningen_US
dc.subjectPseudo-inversesen_US
dc.subjectRandom vectorsen_US
dc.subjectThreshold functionsen_US
dc.subjectClassification (of information)en_US
dc.titleMulti-Label classifier based on Kernel Random Vector Functional Link Networken_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: